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Abstract This paper introduces four new methods for
robust design optimization (RDO) of complex engineer-
ing systems. The methods involve polynomial dimensional
decomposition (PDD) of a high-dimensional stochastic
response for statistical moment analysis, a novel integration
of PDD and score functions for calculating the second-
moment sensitivities with respect to the design variables,
and standard gradient-based optimization algorithms. New
closed-form formulae are presented for the design sensi-
tivities that are simultaneously determined along with the
moments. The methods depend on how statistical moment
and sensitivity analyses are dovetailed with an optimiza-
tion algorithm, encompassing direct, single-step, sequential,
and multi-point single-step design processes. Numerical
results indicate that the proposed methods provide accu-
rate and computationally efficient optimal solutions of RDO
problems, including an industrial-scale lever arm design.

Keywords Design under uncertainty ·
ANOVA dimensional decomposition ·
Orthogonal polynomials · Score functions ·
Optimization

The authors acknowledge financial support from the U.S. National
Science Foundation under Grant No. CMMI-0969044.

X. Ren · S. Rahman (�)
Department of Mechanical & Industrial Engineering,
The University of Iowa, Iowa City, IA 52242, USA
e-mail: rahman@engineering.uiowa.edu

X. Ren
e-mail: Xuchun-ren@uiowa.edu

1 Introduction

Robust design optimization (RDO) constitutes a mathemat-
ical framework for solving design problems in the presence
of uncertainty, manifested by statistical descriptions of the
objective and/or constraint functions (Taguchi 1993; Chen
et al. 1996; Du and Chen 2000; Mourelatos and Liang 2006;
Zaman et al. 2011; Park et al. 2006). Aimed at improv-
ing product quality, it minimizes the propagation of input
uncertainty to output responses of interest, leading to an
insensitive design. RDO, pioneered by Taguchi (1993), is
being increasingly viewed as an enabling technology for
design of aerospace, civil, and automotive structures sub-
ject to uncertainty (Chen et al. 1996; Du and Chen 2000;
Mourelatos and Liang 2006; Zaman et al. 2011; Park et al.
2006).

The objective or constraint functions in RDO often
involve second-moment properties, such as means and stan-
dard deviations, of stochastic responses, describing the
statistical performance of a given design. Therefore, solv-
ing an RDO problem draws in uncertainty quantification
of random responses and its coupling with gradient-based
optimization algorithms, consequently demanding a greater
computational effort than that required by a determinis-
tic design optimization. There exist three principal con-
cerns or shortcomings when conducting RDO with exist-
ing approaches or techniques. First, the commonly used
stochastic methods, including the Taylor series or pertur-
bation expansions (Huang and Du 2007), point estimate
method (Huang and Du 2007), polynomial chaos expansion
(PCE) (Wang and Kim 2006), tensor-product quadrature
rule (Lee et al. 2009), and dimension-reduction methods
(Lee et al. 2008, 2009) may not be adequate or applicable
for uncertainty quantification of many large-scale practi-
cal problems. For instance, the Taylor series expansion and
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point estimate methods, although simple and inexpensive,
begin to break down when the input-output mapping is
highly nonlinear or the input uncertainty is arbitrarily
large. Furthermore, truly high-dimensional problems are
all but impossible to solve using the PCE and tensor-
product quadrature rule due to the curse of dimensional-
ity. The dimension-reduction methods, developed by the
author’s group (Rahman and Xu 2004; Xu and Rahman
2004), including a modification (Youn et al. 2008), alle-
viate the curse of dimensionality to some extent, but they
are rooted in the referential dimensional decomposition,
resulting in sub-optimal approximations of a multivariate
function (Rahman 2011, 2012). Second, many of the afore-
mentioned methods invoke finite-difference techniques to
calculate design sensitivities of the statistical moments.
They demand repeated stochastic analyses for nominal and
perturbed values of design parameters and are, therefore,
expensive and unwieldy. Although some methods, such as
Taylor series expansions, also provide the design sensitiv-
ities economically, the sensitivities are either inaccurate or
unreliable because they inherit errors from the affiliated
second-moment analysis. Therefore, alternative stochastic
methods should be explored for calculating the statistical
moments and design sensitivities as accurately as possible
and simultaneously, but without the computational burden
of crude Monte Carlo simulation (MCS). Third, existing
methods for solving RDO problems permit the objective and
constraint functions and their sensitivities to be calculated
only at a fixed design, requiring new statistical moment and
sensitivity analyses at every design iteration until conver-
gence is attained. Consequently, the current RDO methods,
entailing expensive finite-element analysis (FEA) or similar
numerical calculations, are computationally intensive, if not
prohibitive, when confronted with a large number of design
or random variables. New or significantly improved design
paradigms, possibly requiring a single or a few stochastic
simulations, are needed for solving the entire RDO problem.
Further complications may arise when an RDO problem is
formulated in conjunction with a multi-point approxima-
tion (Toropov et al. 1993)—a setting frequently encountered
when tackling a practical optimization problem with a large
design space. In which case, one must integrate stochas-
tic analysis, design sensitivity analysis, and optimization
algorithms on a local subregion of the entire design space.

This paper presents four new methods for robust design
optimization of complex engineering systems. The methods
are based on: (1) polynomial dimensional decomposition
(PDD) of a high-dimensional stochastic response for sta-
tistical moment analysis; (2) a novel integration of PDD
and score functions for calculating the second-moment
sensitivities with respect to design variables; and (3) stan-
dard gradient-based optimization algorithms, encompassing
direct, single-step, sequential, and multi-point single-step

design processes. Section 2 formally defines a general
RDO problem, including a concomitant mathematical state-
ment. Section 3 starts with a brief exposition of the
analysis-of-variance (ANOVA) dimensional decomposition
and explains how it leads up to PDD approximations, result-
ing in explicit formulae for the first two moments of a
generic stochastic response. The calculation of the expan-
sion coefficients by dimension-reduction integration is also
briefly described. Section 4 defines score functions and
unveils new closed-form formulae for the design sensitiv-
ities of the first two moments, determined from a single
stochastic analysis. Section 5 introduces four new design
methods and explains how the stochastic analysis and design
sensitivities from a PDD approximation are integrated with
a gradient-based optimization algorithm in each method.
Section 6 presents four numerical examples involving math-
ematical functions or solid-mechanics problems, contrasting
the accuracy, convergence properties, and computational
efforts of the proposed RDO methods. It is followed by
Section 7, which discusses the efficiency and applicability
of all four methods. Finally, the conclusions are drawn in
Section 8.

2 Robust design optimization

Let N, N0, R, and R
+
0 represent the sets of positive inte-

ger (natural), non-negative integer, real, and non-negative
real numbers, respectively. For k ∈ N, denote by R

k the k-
dimensional Euclidean space and by N

k
0 the k-dimensional

multi-index space. These standard notations will be used
throughout the paper.

Consider a measurable space (�,F), where � is a sam-
ple space and F is a σ -field on �. Defined over (�,F),
let {Pd : F → [0, 1]} be a family of probability measures,
where for M ∈ N and N ∈ N, d = (d1, . . . , dM) ∈ D
is an R

M -valued design vector with non-empty closed set
D ⊆ R

M and X := (X1, . . . , XN) : (�,F) → (RN,BN)

be an R
N -valued input random vector with BN representing

the Borel σ -field on R
N , describing the statistical uncertain-

ties in loads, material properties, and geometry of a complex
mechanical system. The probability law of X is completely
defined by a family of the joint probability density functions
{fX(x; d), x ∈ R

N, d ∈ D} that are associated with prob-
ability measures {Pd, d ∈ D}, so that the probability triple
(�,F, Pd) of X depends on d. A design variable dk can
be any distribution parameter or a statistic−for instance, the
mean or standard deviation−of Xi .

Let yl(X), l = 0, 1, 2, . . . , K , be a collection of K + 1
real-valued, square-integrable, measurable transformations
on (�,F), describing relevant geometry (e.g., length, area,
volume, mass) and performance functions of a complex sys-
tem. It is assumed that yl : (RN,BN) → (R,B) is not an
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explicit function of d, although yl implicitly depends on d
via the probability law of X. This is not a major limitation,
as most RDO problems involve means and/or standard devi-
ations of random variables as design variables. Nonetheless,
the mathematical formulation of a general RDO problem
involving an objective function c0 : R

M → R and con-
straint functions cl : R

M → R, where l = 1, . . . , K and
1 ≤ K < ∞, requires one to

min
d∈D⊆RM

c0(d) := g0 (Ed [y0(X)] , vard [y0(X)]) ,

subject to cl(d) := gl (Ed [yl(X)] , vard [yl(X)])

≤ 0, l = 1, . . . , K,

dk,L ≤ dk ≤ dk,U , k = 1, . . . , M,

(1)

where Ed[yl(X)] := ∫
RN yl(x)fX(x; d)dx is the mean

of yl(X) with Ed denoting the expectation operator
with respect to the probability measure Pd, d ∈ R

M ,
vard[yl(X)] := Ed[{yl(X) − Ed[yl(X)]}2] is the variance
of yl(X), and gl , l = 0, 1, . . . , K , are arbitrary functions
of Ed[yl(X)] and vard[yl(X)]. However, in most applica-
tions (Huang and Du 2007; Wang and Kim 2006; Lee et al.
2008, 2009), the functions gl are prescribed as linear trans-
formations of the mean and standard deviation of yl , leading
one to

min
d∈D⊆RM

c0(d) := w1
Ed [y0(X)]

μ∗
0

+ w2

√
vard [y0(X)]

σ ∗
0

,

subject to cl(d) := αl

√
vard [yl(X)] − Ed [yl(X)]

≤ 0, l = 1, . . . , K,

dk,L ≤ dk ≤ dk,U , k = 1, . . . , M,

(2)

where w1 ∈ R
+
0 and w2 ∈ R

+
0 are two non-negative, real-

valued weights, satisfying w1 + w2 = 1, μ∗
0 ∈ R \ {0} and

σ ∗
0 ∈ R

+
0 \ {0} are two non-zero, real-valued scaling factors;

αl ∈ R
+
0 , l = 0, 1, . . . , K , are non-negative, real-valued

constants associated with the probabilities of constraint sat-
isfaction; and dk,L and dk,U are the lower and upper bounds,
respectively, of dk . Other formulations entailing nonlinear
functions of the first two or higher-order moments can be
envisioned, but they are easily tackled by the proposed
methods. Nonetheless, the focus of this work is solving the
RDO problem described by (2) for arbitrary functions yl ,
l = 0, 1, 2, . . . , K , and arbitrary probability distributions
of X.

3 Statistical moment analysis

Let y(X) := y(X1, . . . , XN ) represent any one of the ran-
dom functions yl , l = 0, 1, . . . , K , introduced in Section
2, and let L2(�,F, Pd) represent a Hilbert space of square-

integrable functions, including y, with respect to the prob-
ability measure fX(x; d)dx supported on R

N . Assuming
independent coordinates of X, its joint probability density
is expressed by a product, fX(x; d) = ∏i=N

i=1 fXi
(xi; d),

of marginal probability density functions fXi
: R →

R
+
0 of Xi , i = 1, . . . , N , defined on its probability

triple (�i,Fi , Pi,d) with a bounded or an unbounded sup-
port on R. Then, for a given subset u ⊆ {1, . . . , N},
fX−u(x−u; d) := ∏N

i=1,i /∈u fi(xi; d) defines the marginal
density function of X−u := X{1,...,N}\u.

3.1 ANOVA dimensional decomposition

The ANOVA dimensional decomposition, expressed by the
recursive form (Efron and Stein 1981; Sobol 2003; Rahman
2012)

y(X) =
∑

u⊆{1,...,N}
yu(Xu; d), (3)

y∅(d) =
∫

RN

y(x)fX(x; d)dx, (4)

yu(Xu; d) =
∫

RN−|u|
y(Xu, x−u)fX−u(x−u; d)dx−u

−
∑

v⊂u

yv(Xv; d), (5)

is a finite, hierarchical expansion of y in terms of its
input variables with increasing dimensions, where u ⊆
{1, . . . , N} is a subset with the complementary set −u =
{1, . . . , N}\u and cardinality 0 ≤ |u| ≤ N , and yu is a
|u|-variate component function describing a constant or the
interactive effect of Xu = (Xi1 , . . . , Xi|u|), 1 ≤ i1 < . . . <

i|u| ≤ N , a subvector of X, on y when |u| = 0 or |u| > 0.
The summation in (3) comprises 2N terms, with each term
depending on a group of variables indexed by a particu-
lar subset of {1, . . . , N}, including the empty set ∅. In (5),
(Xu, x−u) denotes an N-dimensional vector whose ith com-
ponent is Xi if i ∈ u and xi if i /∈ u. When u = ∅, the sum
in (5) vanishes, resulting in the expression of the constant
function y∅ in (4). When u = {1, . . . , N}, the integration in
(5) is on the empty set, reproducing (3) and hence finding
the last function y{1,...,N}. Indeed, all component functions
of y can be obtained by interpreting literally (5).

Remark 1 The ANOVA component functions yu, ∅ �= u ⊆
{1, . . . , N}, are uniquely determined from the annihilating
conditions (Sobol 2003; Rahman 2012),
∫

R

yu(xu; d)fXi
(xi; d)dxi = 0 for i ∈ u, (6)

resulting in two remarkable properties: (1) the component
functions, yu, ∅ �= u ⊆ {1, . . . , N}, have zero means;
and (2) any two distinct component functions yu and yv ,
where u ⊆ {1, . . . , N}, v ⊆ {1, . . . , N}, and u �= v, are
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orthogonal. Further details are available elsewhere (Rahman
2012).

Remark 2 The coefficient y∅ = Ed[y(X)] in (4) is a func-
tion of the design vector d, which describes the probability
distribution of the random vector X. Therefore, the adjec-
tive “constant” used to describe y∅ should be interpreted
with respect to X, not d. A similar condition applies for the
component functions yu, ∅ �= u ⊆ {1, . . . , N}, which also
depend on d.

3.2 Polynomial dimensional decomposition

3.2.1 Orthonormal polynomials

Let {ψij (xi; d); j = 0, 1, . . .} be a set of univariate,
orthonormal polynomial basis functions in the Hilbert space
L2(�i,Fi , Pi,d) that is consistent with the probability mea-
sure Pi,d or fXi

(xi; d)dxi of Xi for a given design d.
For ∅ �= u = {i1, . . . , i|u|} ⊆ {1, . . . , N}, where 1 ≤
|u| ≤ N and 1 ≤ i1 < . . . < i|u| ≤ N , let (×p=|u|

p=1 �ip ,

×p=|u|
p=1 Fip , ×p=|u|

p=1 Pip,d) be the product probability triple
of Xu = (Xi1 , . . ., Xi|u|). Denote the associated
space of the |u|-variate component functions of y by
L2(×p=|u|

p=1 �ip , ×p=|u|
p=1 Fip , ×p=|u|

p=1 Pip,d) := {yu : ∫
R|u| y2

u

(xu; d)fXu(xu; d)dxu < ∞}, which is a Hilbert space.
Since the joint density of Xu is separable (independence of
Xi, i ∈ u), that is, fXu(xu; d) =∏|u|

p=1fXip
(xip ; d)dxip , the

product ψuj|u|(Xu; d) := ∏|u|
p=1 ψipjp (Xip ; d), where j|u| =

(j1, . . . , j|u|) ∈ N
|u|
0 , a |u|-dimensional multi-index with

∞-norm ||j|u|||∞ = max(j1, . . . , j|u|), constitutes a mul-

tivariate orthonormal polynomial basis in L2(×p=|u|
p=1 �ip ,

×p=|u|
p=1 Fip , ×p=|u|

p=1 Pip,d). Two important properties of these
product polynomials from tensor products of Hilbert spaces
are as follows.

Proposition 1 The product polynomials ψuj|u|(Xu; d), ∅ �=
u ⊆ {1, . . . , N}, j1, . . . , j|u| �= 0, d ∈ D, have zero means,
i.e.,

Ed
[
ψuj|u|(Xu; d)

] = 0. (7)

Proposition 2 Any two distinct product polynomials
ψuj|u|(Xu; d) and ψvk|v|(Xv; d) for d ∈ D, where ∅ �=
u ⊆ {1, . . . , N}, ∅ �= v ⊆ {1, . . . , N}, j1, . . . , j|u| �=
0, k1, . . . , k|v| �= 0, are uncorrelated and each has unit
variance, i.e.,

Ed
[
ψuj|u|(Xu; d)ψvk|v|(Xu; d)

] =
{

1 if u = v; j|u| = k|v|,
0 otherwise.

(8)

Proof The results of Propositions 1 and 2 follow by recog-
nizing independent coordinates of X and using the second-
moment properties of univariate orthonormal polynomials:
(1) Ed[ψij (Xi; d)] = 1 when j = 0 and zero when j ≥ 1;
and (2) Ed[ψij1(Xi; d)ψij2(Xi; d)] = 1 when j1 = j2 and
zero when j1 �= j2 for an arbitrary random variable Xi .

Remark 3 Given a probability measure Pi,d of any random
variable Xi , the well-known three-term recurrence relation
is commonly used to construct the associated orthogonal
polynomials (Rahman 2009a; Gautschi 2004). For m ∈ N,
the first m recursion coefficient pairs are uniquely deter-
mined by the first 2m moments of Xi that must exist.
When these moments are exactly calculated, they lead to
exact recursion coefficients, some of which belong to clas-
sical orthogonal polynomials. For an arbitrary probability
measure, approximate methods, such as the Stieltjes proce-
dure, can be employed to obtain the recursion coefficients
(Rahman 2009a; Gautschi 2004).

3.2.2 Stochastic expansion

The orthogonal polynomial expansion of a non-constant |u|-
variate component function in (5) becomes (Rahman 2008;
2009a)

yu(Xu; d) =
∑

j|u|∈N|u|
0

j1,...,j|u| �=0

Cuj|u|(d)ψuj|u|(Xu; d) (9)

for any ∅ �= u ⊆ {1, . . . , N} with

Cuj|u|(d) :=
∫

RN

y(x)ψuj|u|(xu; d)fX(x; d)dx (10)

representing the corresponding expansion coefficient. Simi-
lar to y∅, the coefficient Cuj|u| also depends on the design
vector d. When u = {i}, i = 1, . . . , N , the univariate com-
ponent functions and expansion coefficients are y{i}(Xi;
d) = ∑∞

j=1 Cij (d)ψij (Xi; d) and Cij (d) := C{i}(j)(d),
respectively. When u = {i1, i2}, i1 = 1, . . . , N − 1,
i2 = i1 + 1, . . . , N , the bivariate component functions
and expansion coefficients are y{i1,i2}(Xi1 , Xi2; d) =∑∞

j1=1
∑∞

j2=1 Ci1i2j1j2(d)ψi1j1(Xi1; d)ψi2j2(Xi2; d) and
Ci1i2j1j2(d) := C{i1,i2}(j1,j2)(d), respectively, and so on.
Using Propositions 1 and 2, all component functions yu,
∅ �= u ⊆ {1, . . . , N}, are found to satisfy the annihilating
conditions of the ANOVA dimensional decomposition.
The end result of combining (3)–(5) and (9) is the PDD
(Rahman 2008, 2009a),

y(X) = y∅(d) +
∑

∅�=u⊆{1,...,N}

∑

j|u|∈N|u|
0

j1,...,j|u| �=0

Cuj|u|(d)ψuj|u|(Xu; d),

(11)
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providing an exact, hierarchical expansion of y in terms of
an infinite number of coefficients or orthonormal polynomi-
als. In practice, the number of coefficients or polynomials
must be finite, say, by retaining at most mth-order polyno-
mials in each variable. Furthermore, in many applications,
the function y can be approximated by a sum of at most S-
variate component functions, where S ∈ N; 1 ≤ S ≤ N ,
resulting in the S-variate, mth-order PDD approximation

ỹS,m(X) = y∅(d) +
∑

∅�=u⊆{1,...,N}
1≤|u|≤S

∑

j|u|∈N|u|
0 ,||j|u|||∞≤m

j1,...,j|u| �=0

Cuj|u|(d)ψuj|u|(Xu; d), (12)

containing
∑S

k=0

(
N

S−k

)
mS−k = ∑S

k=0

(
N
k

)
mk number of

PDD coefficients and corresponding orthonormal polyno-
mials. Due to its additive structure, the approximation in
(12) includes degrees of interaction among at most S input
variables Xi1 , . . . , XiS , 1 ≤ i1 ≤ . . . ≤ iS ≤ N . For
instance, by selecting S = 1 and 2, the functions

ỹ1,m(X) = y∅ +
N∑

i=1

m∑

j=1

Cij (d)ψij (Xi; d) (13)

and

ỹ2,m(X) = y∅(d) +
N∑

i=1

m∑

j=1

Cij (d)ψij (Xi; d)

+
N−1∑

i1=1

N∑

i2=i1+1

m∑

j1=1

m∑

j2=1

Ci1i2j1j2(d)

×ψi1j1(Xi1; d)ψi2j2(Xi2; d), (14)

respectively, provide univariate and bivariate mth-order
PDD approximations, contain contributions from all input
variables, and should not be viewed as first- and second-
order approximations, nor as limiting the nonlinearity
of y. Depending on how the component functions are
constructed, arbitrarily high-order univariate and bivariate
terms of y could be lurking inside ỹ1,m and ỹ2,m. When
S → N and m → ∞, ỹS,m converges to y in the mean-
square sense, permitting (12) to generate a hierarchical and
convergent sequence of approximations of y. Readers inter-
ested in further details of PDD are referred to the authors’
past works (Rahman 2008, 2009a).

3.3 Statistical moments

Applying the expectation operator on ỹS,m(X) and noting
Proposition 1, the mean (Rahman 2010)

Ed
[
ỹS,m(X)

] = y∅(d) (15)

of the S-variate, mth-order PDD approximation matches
the exact mean Ed [y(X)] = y∅(d), regardless of S or
m. Applying the expectation operator again, this time on
[ỹS,m(X) − y∅(d)]2, and recognizing Propositions 1 and 2,
results in the approximate variance (Rahman 2010)

vard
[
ỹS,m(X)

] := Ed

[(
ỹS,m(X) − E

[
ỹS,m(X)

])2]

=
∑

∅�=u⊆{1,...,N}
1≤|u|≤S

∑

j|u|∈N|u|
0 ,||j|u|||∞≤m

j1,...,j|u| �=0

C2
uj|u|(d),

(16)

calculated as the sum of squares of the expansion coeffi-
cients from the S-variate, mth-order PDD approximation of
y(X). Clearly, the approximate variance in (16) approaches
the exact variance

vard[y(X)] := Ed

[
(y(X) − E [y(X)])2

]

=
∑

∅�=u⊆{1,...,N}

∑

j|u|∈N|u|
0

j1,...,j|u| �=0

C2
uj|u|(d) (17)

of y when S → N and m → ∞. The mean-square con-
vergence of ỹS,m is guaranteed as y and its component
functions are all members of the associated Hilbert spaces.

For the two special cases, S = 1 and S = 2, the univari-
ate and bivariate PDD approximations yield the same exact
mean value, μ̃1,m(d) = μ̃2,m(d) = y∅(d), as noted in (15).
However, the respective variance approximations,

vard[ỹ1,m(X)] =
N∑

i=1

m∑

j=1

C2
ij (d) (18)

and

vard[ỹ2,m(X)] =
N∑

i=1

m∑

j=1

C2
ij (d)

+
N−1∑

i1=1

N∑

i2=i1+1

m∑

j2=1

m∑

j1=1

C2
i1i2j1j2

(d), (19)

differ, depend on m, and progressively improve as S

becomes larger. Recent works on error analysis indi-
cate that the second-moment properties obtained from
the ANOVA dimensional decomposition, which leads to
PDD approximations, are superior to those derived from
dimension-reduction methods that are grounded in the ref-
erential dimensional decomposition (Rahman 2011, 2012).
Therefore, employing PDD for solving RDO problems
contributes to development of a new, significant design
paradigm.
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3.4 Expansion coefficients

The determination of the expansion coefficients y∅ and
Cuj|u| in (4) and (10), respectively, of the stochastic res-
ponses involves various N-dimensional integrals over RN .
For large N , a full numerical integration employing an
N-dimensional tensor product of a univariate quadra-
ture formula is computationally prohibitive. Instead, a
dimension-reduction integration scheme can be applied to
estimate the coefficients efficiently.

The dimension-reduction integration, originally devel-
oped by Xu and Rahman (2004), entails approximating a
high-dimensional integral of interest by finite-sum lower-
dimensional integrations. For calculating the expansion
coefficients y∅ and Cuj|u| , this is accomplished by replacing
the N-variate function y in (4) and (10) with an R-variate
truncation, where R < N , of its referential dimensional
decomposition at a chosen reference point (Rahman 2011,
2012). The result is a reduced integration scheme, requir-
ing evaluations of at most R-dimensional integrals. The
scheme facilitates calculation of the coefficients approach-
ing their exact values as R → N , and is significantly more
efficient than performing one N-dimensional integration,
particularly when R  N . Hence, the computational effort
is significantly lowered using the dimension-reduction inte-
gration. When R = 1 or 2, the scheme involves one-, or, at
most, two-dimensional integrations, respectively. Nonethe-
less, numerical integration is still required for a general
integrand. The Gauss-type quadrature rule was used to per-
form integrations. The integration points and associated
weights, which depend on the probability distribution of Xi ,
are readily available when the basis functions are polyno-
mials (Gautschi 2004; Rahman 2009a). Further details are
available elsewhere (Xu and Rahman 2004).

The S-variate, mth-order PDD approximation requires
evaluations of QS,m = ∑k=S

k=0

(
N

S−k

)
mS−k = ∑k=S

k=0

(
N
k

)
mk

expansion coefficients, including y∅. If these coefficients
are estimated by dimension-reduction integration with R =
S < N and, therefore, involve at most S-dimensional tensor
product of an n-point univariate quadrature rule depending
on m, then the total cost for the S-variate, mth-order approx-
imation entails a maximum of

∑k=S
k=0

(
N

S−k

)
nS−k(m) =

∑k=S
k=0

(
N
k

)
nk(m) function evaluations. If the integration

points include a common point in each coordinate − a spe-
cial case of symmetric input probability density functions
and odd values of n − the number of function evaluations
reduces to

∑k=S
k=0

(
N

S−k

)
(n(m)−1)S−k =∑k=S

k=0

(
N
k

)
(n(m)−

1)k . Nonetheless, the computational complexity of the S-
variate PDD approximation is Sth-order polynomial with
respect to the number of random variables or integration
points. Therefore, PDD alleviates the curse of dimensional-
ity to some extent.

4 Proposed methods for design sensitivity analysis1

When solving design problems using gradient-based opti-
mization algorithms, at least first-order derivatives of both
the objective and constraint functions with respect to each
design variable are required. For an RDO problem defined
by (2), calculating such derivatives is trivial once the deriva-
tives of the first two moments of yl(X), l = 0, 1, . . . , K ,
are known. In this subsection, a new, analytical method,
developed by blending PDD with score functions, for design
sensitivity analysis is presented.

4.1 Score functions

Suppose that the first-order derivatives of the first two
moments, Ed[yr(X)], r = 1, 2, of a generic stochastic
response y(X) with respect to a design variable dk are
sought. Taking the partial derivative of these moments with
respect to dk and then applying the Lebesgue dominated
convergence theorem (Browder 1996), which permits the
differential and integral operators to be interchanged, yields
the sensitivities

∂Ed
[
yr(X)

]

∂dk

= ∂

∂dk

∫

RN

yr(x)fX(x; d)dx

=
∫

RN

yr(x)
∂ ln fX(x; d)

∂dk

fX(x; d)dx,

r = 1, 2; k = 1, . . . , M, (20)

provided that fX(x; d) > 0. In (20), ∂ ln fX(X; d)
/
∂dk is

known as the first-order score function for the design vari-
able dk (Rubinstein and Shapiro 1993; Rahman 2009b). In
general, the sensitivities are not available analytically since
the moments are not either. Nonetheless, the moments and
their sensitivities have both been formulated as expectations
of stochastic quantities with respect to the same probability
measure, facilitating their concurrent evaluations in a single
stochastic simulation or analysis.

Remark 4 The evaluation of score functions, ∂ ln fX(X;
d)
/
∂dk ; k = 1, . . . ,M , requires differentiating only the

probability density function of X. Therefore, the resulting
score functions can be determined easily and, in many cases,
analytically—for instance, when X follows classical proba-
bility distributions (Rahman 2009b). If the density function
of X is arbitrarily prescribed, the score functions can be cal-
culated numerically, yet inexpensively, since no evaluation
of the response function is involved.

1The nouns sensitivity, derivative, and gradient are used synony-
mously in this paper.
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When X comprises independent variables, as assumed
here, the log density, ln fX(X; d) = ∑i=N

i=1 ln fXi
(xi; d),

is a sum of univariate functions. If dk is a distribution
parameter of the random variable Xik , then the first-
order score function for the kth design variable simpli-
fies to ∂ ln fX(x; d)

/
∂dk = ∂ ln fXik

(Xik ; d)
/
∂dk , which

is a univariate function of Xik . Defining sk(Xik ; d) :=
∂ ln fXik

(Xik ; d)
/
∂dk as the kth first-order score function,

the sensitivity is obtained from

∂Ed
[
yr(X)

]

∂dk

=
∫

RN

yr(x)sk(xik ; d)fX(x; d)dx

=: Ed
[
yr(X)sk(Xik ; d)

]
, (21)

an expectation of a product comprising response and score
functions with respect to the probability measure Pd, d ∈ D.

4.2 Exact sensitivities

For independent coordinates of X, consider the Fourier-
polynomial expansion of the kth score function

sk(Xik ; d) = sk,∅(d) +
∞∑

j=1

Dik,j (d)ψikj (Xik ; d), (22)

consisting of its own expansion coefficients

sk,∅(d) :=
∫

R

sk(xik ; d)fXik
(xik ; d)dxik (23)

and

Dik,j (d) :=
∫

R

sk(xik ; d)ψikj (xik ; d)fXik
(xik ; d)dxik . (24)

Employing (11) and (22), the product appearing in the last
expression of (21) expands to

yr(X)sk(Xik ; d)

=

⎛

⎜
⎜
⎜
⎜
⎝

y∅(d) +
∑

∅�=u⊆{1,...,N}

∑

j|u|∈N|u|
0

j1,...,j|u| �=0

Cuj|u|(d)ψuj|u|(Xu; d)

⎞

⎟
⎟
⎟
⎟
⎠

r

×
⎛

⎝sk,∅(d) +
∞∑

j=1

Dik,j (d)ψikj (Xik ; d)

⎞

⎠ , (25)

encountering the same orthonormal polynomials bases that
are consistent with the probability measure fX(x; d)dx. The
expectation of (25) for r = 1 and 2, aided by Propositions 1
and 2, produces

∂Ed [y(X)]

∂dk

= sk,∅(d)y∅(d) +
∞∑

j=1

Cikj (d)Dik,j (d), (26)

∂Ed
[
y2(X)

]

∂dk

= 2y∅(d)

∞∑

j=1

Cikj (d)Dik,j (d) + sk,∅(d)y2
∅(d)

+ sk,∅(d)vard[y(X)] + Tk, (27)

representing closed-form expressions of the sensitivities in
terms of the PDD or Fourier-polynomial expansion coeffi-
cients of the response or score function. The last term on the
right side of (27) is

Tk =
N∑

i1=1

N∑

i2=1

∞∑

j1=1

∞∑

j2=1

∞∑

j3=1

Ci1j1(d)Ci2j2(d)Dik,j3(d)

× Ed
[
ψi1j1(Xi1; d)ψi2j2(Xi2; d)ψikj3(Xik ; d)

]
, (28)

which requires expectations of various products of three
random orthonormal polynomials. However, if Xi follows
Gaussian distribution, then the expectations are easily deter-
mined from the properties of univariate Hermite polynomi-
als, yielding (Busbridge 1948)

Ed
[
ψi1j1(Xi1; d)ψi2j2(Xi2; d)ψi3j3(Xi2; d)

]

=

⎧
⎪⎪⎨

⎪⎪⎩

√
j1!j2!j3!

(q − j1)!(q − j2)!(q − j3)! if
i1 = i2 = i3, q ∈ N,

j1 + j2 + j3 = 2q,

j1, j2, j3 ≤ q,

0 otherwise.

(29)

Note that these sensitivity equations are exact because PDD
and Fourier-polynomial expansion provide exact represen-
tation of a square-integrable function.

4.3 Approximate sensitivities

When y(X) and sk(Xik ; d) are replaced by their S-variate,
mth-order PDD and m′th-order Fourier-polynomial approx-
imations, respectively, the resultant sensitivity equations,
expressed by

∂Ed
[
ỹS,m(X)

]

∂dk

= sk,∅(d)y∅(d) +
mmin∑

j=1

Cikj (d)Dik,j (d)

(30)

and

∂Ed

[
ỹ2
S,m(X)

]

∂dk

= 2y∅(d)

mmin∑

j=1

Cikj (d)Dik,j (d) + sk,∅(d)y2
∅(d)

+ sk,∅(d)vard
[
ỹS,m(X)

]+ T̃k,m,m′, (31)
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where mmin := min(m, m′) and

T̃k,m,m′ =
N∑

i1=1

N∑

i2=1

m∑

j1=1

m∑

j2=1

m′
∑

j3=1

Ci1j1(d)Ci2j2(d)Dik,j3(d)

×Ed

[
ψi1j1(Xi1; d)ψi2j2(Xi2; d)ψiik j3(Xik ; d)

]
,

(32)

become approximate, relying on the truncation parameters
S, m, and m′ in general. It is elementary to show that when
S = N and m = m′ = ∞, vard[ỹS,m(X)] = vard[y(X)]
and T̃k,m,m′ = Tk . Therefore, the approximate sensitivities
of the moments also converge to exactness when S → N

and mmin → ∞.
Of the two sensitivities, ∂Ed[ỹS,m(X)]/∂dk does not

depend on S, meaning that both the univariate (S = 1) and
bivariate (S = 2) approximations, given the same mmin <

∞, form the same result, as displayed in (30). However, the
sensitivity equations of ∂Ed[ỹ2

S,m(X)]/∂dk for the univari-
ate and bivariate approximations vary with respect to S, m,
and m′. For instance, the univariate approximation results in

∂Ed

[
ỹ2

1,m(X)
]

∂dk

= 2y∅(d)

mmin∑

j=1

Cikj (d)Dik,j (d) + sk,∅(d)y2
∅(d)

+ sk,∅(d)vard
[
ỹ1,m(X)

]+ T̃k,m,m′, (33)

whereas the bivariate approximation yields

∂Ed

[
ỹ2

2,m(X)
]

∂dk

= 2y∅(d)

mmin∑

j=1

Cikj (d)Dik,j (d) + sk,∅(d)y2
∅(d)

+ sk,∅(d)vard[ỹ2,m(X)] + T̃k,m,m′ . (34)

Analogous to the moments, the univariate and bivariate
approximations of the sensitivities of the moments involve
only univariate and at most bivariate expansion coefficients
of y, respectively. Since the expansion coefficients of the
score function do not involve the response function, no
additional cost is incurred from response analysis. In other
words, the effort required to obtain the statistical moments
of a response also furnish the sensitivities of moments, a
highly desirable trait for efficiently solving RDO problems.

Remark 5 Since the score functions are univariate func-
tions, their expansion coefficients require only univariate
integration for their evaluations. When Xi follows classical
distributions—for instance, the Gaussian distribution—then
the coefficients can be calculated exactly or analytically.
Otherwise, numerical quadrature is required. Nonetheless,

there is no need to employ dimension-reduction integra-
tion for calculating the expansion coefficients of the score
functions.

5 Proposed methods for design optimization

The PDD approximations described in the preceding section
provide a means to approximate the objective and constraint
functions, including their design sensitivities, from a single
stochastic analysis. Therefore, any gradient-based algorithm
employing PDD approximations should render a convergent
solution of the RDO problem in (2). However, there exist
multiple ways to dovetail stochastic analysis with an opti-
mization algorithm. Four such design optimization methods,
all anchored in PDD, are presented in this section.

5.1 Direct PDD

The direct PDD method involves straightforward integration
of the PDD-based stochastic analysis with design optimiza-
tion. Given a design vector at the current iteration and
the corresponding values of the objective and constraint
functions and their sensitivities, the design vector at the
next iteration is generated from a suitable gradient-based
optimization algorithm. However, new statistical moment
and sensitivity analyses, entailing re-calculations of the
PDD expansion coefficients, are needed at every design
iteration. Therefore, the direct PDD method is expensive,
depending on the cost of evaluating the objective and
constraint functions and the requisite number of design
iterations.

5.2 Single-step PDD

The single-step PDD method is motivated on solving the
entire RDO problem from a single stochastic analysis by
sidestepping the need to recalculate the PDD expansion
coefficients at every design iteration. It subsumes two
important assumptions: (1) an S-variate, mth-order PDD
approximation ỹS,m of y at the initial design is acceptable
for all possible designs; and (2) the expansion coefficients
for one design, derived from those generated for another
design, are accurate.

Consider a change of the probability measure of X from
fX(x; d)dx to fX(x; d′)dx, where d and d′ are two arbi-
trary design vectors corresponding to old and new designs,
respectively. Let {ψij (Xi; d′); j = 0, 1, . . .} be a set
of new orthonormal polynomial basis functions consistent
with the marginal probability measure fXi

(xi; d′)dxi of
Xi , producing new product polynomials ψuj|u|(Xu; d′) =
∏|u|

p=1 ψipjp (Xip ; d′), ∅ �= u ⊆ {1, . . . , N}. Assume that
the expansion coefficients, y∅(d) and Cuj|u|(d), for the old
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design have been calculated already. Then, the expansion
coefficients for the new design are determined from

y∅(d′) =
∫

RN

⎡

⎢
⎣

∑

∅�=u⊆{1,...,N}

∑

j|u|∈N|u|
0

j1,...,j|u| �=0

Cuj|u|(d)

× ψuj|u|(xu; d) + y∅(d)

⎤

⎥
⎦ fX(x; d′)dx (35)

and

Cuj|u|(d
′) =

∫

RN

⎡

⎢
⎣

∑

∅�=v⊆{1,...,N}

∑

j|v|∈N|v|
0

j1,...,j|v| �=0

Cvj|v|(d)

×ψvj|v|(xv; d) + y∅(d)

⎤

⎥
⎦

×ψuj|u|(xu; d′)fX(x; d′)dx, (36)

for all ∅ �= u ⊆ {1, . . . , N} by recycling the old expansion
coefficients and using orthonormal polynomials associated
with both designs. The relationship between the old and
new coefficients, described by (35) and (36), is exact and is
obtained by replacing y with the right side of (11) in (4) and
(10). However, in practice, when the S-variate, mth-order
PDD approximation (12) is used to replace y in (4) and (10),
then the new expansion coefficients,

y∅(d′) ∼=
∫

RN

⎡

⎢
⎣

∑

∅�=u⊆{1,...,N}
1≤|u|≤S

∑

j|u|∈N|u|
0 ,||j|u|||∞≤m

j1,...,j|u| �=0

Cuj|u|(d)

× ψuj|u|(Xu; d) + y∅(d)

⎤

⎥
⎦ fX(x; d′)dx (37)

and

Cuj|u|(d
′) ∼=

∫

RN

⎡

⎢
⎣

∑

∅�=v⊆{1,...,N}
1≤|v|≤S

∑

j|v|∈N|v|
0 ,||j|v|||∞≤m

j1,...,j|v| �=0

Cvj|v|(d)ψvj|v|(Xv; d) + y∅(d)

⎤

⎥
⎦

×ψuj|u|(xu; d′)fX(x; d′)dx, (38)

which are applicable for ∅ �= u ⊆ {1, . . . , N}, 1 ≤ |u| ≤
S, become approximate, although convergent. In the latter
case, the integrals in (37) and (38) consist of finite-order
polynomial functions of at most S variables and can be eval-
uated inexpensively without having to compute the original
function y for the new design. Therefore, new stochastic

analyses, all employing S-variate, mth-order PDD approxi-
mation of y, are conducted with little additional cost during
all design iterations, drastically curbing the computational
effort in solving the RDO problem.

5.3 Sequential PDD

When the truncations parameters, S and/or m, of a PDD
approximation are too low, the assumptions of the single-
step PDD method are likely to be violated, resulting in
a premature or an inaccurate optimal solution. To over-
come this problem, a sequential PDD method, combining
the ideas of the single-step PDD and direct PDD methods,
was developed. It forms a sequential design process, where
each sequence begins with a single-step PDD using the
expansion coefficients calculated at an optimal design solu-
tion generated from the previous sequence. Although more
expensive than the single-step PDD method, the sequential
PDD method is expected to be more economical than the
direct PDD method.

The sequential PDD method is outlined by the following
steps. The flow chart of this method is shown in Fig. 1.

Step 1: Select an initial design vector d0. Define a toler-
ance ε > 0. Set the iteration q = 1, qth initial
design vector d(q)

0 = d0, and approximate optimal

solution d(0)∗ = d0 at q = 0.
Step 2: Select (q = 1) or use (q > 1) the PDD and

Fourier truncation parameters S, m, and m′. At
d = d(q)

0 , generate the PDD expansion coeffi-
cients, y∅(d) and Cuj|u|(d), where ∅ �= u ⊆
{1, . . . , N}, 1 ≤ |u| ≤ S, j|u| ∈ N

|u|
0 , ||j|u|||∞ ≤

m, j1, . . . , j|u| �= 0, using dimension-reduction
integration with R = S, n = m + 1, leading to S-
variate, mth-order PDD approximations of yl(X),
l = 0, 1, . . . , K , in (2). Calculate the expansion
coefficients of the score functions, sk,∅(d) and

Step 2: At                , generate PDD and 
Fourier-polynomial approximations of 

response and score functions.

( )
0
q=d d

Step 4: Converge?

Step 1: Initialize; set                . ( )
0 0
q =d d

Yes

No
Step 3: Solve the RDO problem 

using the single-step PDD method. 

Stop.

No

1q q= +

Fig. 1 A flow chart of the sequential PDD method
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Dik,j (d), where k = 1, . . . , M and j = 1, . . . , m′,
analytically, if possible, or numerically, resulting
in m′th-order Fourier-polynomial approximations
of sk(Xik ; d), k = 1, . . . , M .

Step 3: Solve the design problem in (2) employing PDD
approximations of yl , l = 0, 1, . . . , K and a stan-
dard gradient-based optimization algorithm. In so
doing, recycle the PDD expansion coefficients
obtained from Step 2 in (37) and (38), produc-
ing approximations of the objective and constraint
functions that stem from single calculation of these
coefficients. To evaluate the gradients, recalculate
the Fourier expansion coefficients of score func-
tions as needed. Denote the approximate optimal
solution by d(q)∗ . Set d(q+1)

0 = d(q)∗ .

Step 4: If ||d(q)∗ − d(q−1)∗ ||2 < ε, then stop and denote the
final approximate optimal solution as d̃∗ = d(q)∗ .
Otherwise, update q = q + 1 and go to Step 2.

5.4 Multi-point single-step PDD

The optimization methods described in the preceding sub-
sections are founded on PDD approximations of stochas-
tic responses, supplying surrogates of objective and con-
straint functions for the entire design space. Therefore,
these methods are global and may not be cost-effective
when the truncation parameters of PDD are required to
be exceedingly large to capture high-order responses or
high-variate interactions of input variables. Furthermore, a
global method using a truncated PDD, obtained by retain-
ing only low-order or low-variate terms, may not even find
a true optimal solution. An attractive alternative method,
developed in this work and referred to as the multi-point
single-step PDD method, involves local implementations
of the single-step PDD approximation that are built on
a local subregion of the design space. According to this
method, the original RDO problem is exchanged with a
succession of simpler RDO sub-problems, where the objec-
tive and constraint functions in each sub-problem represent
their multi-point approximations (Toropov et al. 1993). The
design solution of an individual sub-problem, obtained by
the single-step PDD method, becomes the initial design for
the next sub-problem. Then, the move limits are updated,
and the optimization is repeated iteratively until the opti-
mal solution is attained. Due to its local approach, the
multi-point single-step PDD method should solve practical
engineering problems using low-order and/or low-variate
PDD approximations.

Let D = ×k=M
k=1 [dk,L, dk,U ] ⊆ R

M be a rectangular
domain, representing the design space of the RDO prob-
lem defined by (2). For a scalar variable 0 < β

(q)
k ≤ 1

and an initial design vector d(q)

0 = (d
(q)

1,0 , . . . , d
(q)

M,0), the

subset D(q) = ×k=M
k=1 [d(q)

k,0 − β
(q)
k (dk,U − dk,L)/2, d

(q)

k,0 +
β

(q)
k (dk,U − dk,L)/2] ⊆ D ⊆ R

M defines the qth subregion
for q = 1, 2, . . .. According to the multi-point single-step
PDD method, the RDO problem in (2) is reformulated to

min
d∈D(q)⊆D

c̃
(q)

0,S,m(d) := w1

Ed

[
ỹ

(q)

0,S,m(X)
]

μ∗
0

+ w2

√

vard

[
ỹ

(q)

0,S,m(X)
]

σ ∗
0

,

subject to c̃
(q)
l,S,m(d) := αl

√

vard

[
ỹ

(q)
l,S,m(X)

]

−Ed

[
ỹ

(q)
l,S,m(X)

]
≤ 0,

l = 1, . . . , K,

d
(q)

k,0 − β
(q)
k (dk,U − dk,L)/2 ≤ dk ≤ d

(q)

k,0

+ β
(q)
k (dk,U − dk,L)/2, k = 1, . . . , M,

(39)

where ỹ
(q)
l,S,m(X) and c̃

(q)
l,S,m(d), l = 0, 1, 2, . . . , K , are

local, S-variate, mth-order PDD approximations of yl(X)

and cl(d), respectively, at iteration q, and d
(q)

k,0 −β
(q)
k (dk,U −

dk,L)/2 and d
(q)

k,0 + β
(q)
k (dk,U − dk,L)/2, also known as

the move limits, are the lower and upper bounds, respec-
tively, of the subregion D(q). The multi-point single-step
PDD method solves the optimization problem in (39) for
q = 1, 2, . . . by successively employing the single-step
PDD approximation at each subregion or iteration until
convergence is attained. When S → N and m → ∞,
the second-moment properties of PDD approximations con-
verge to their exact values, yielding coincident solutions of
the optimization problems described by (2) and (39). How-
ever, if the subregions are sufficiently small, then for finite
and possibly low values of S and m, (39) is expected to gen-
erate an accurate solution of (2), the principal motivation of
this method.

The multi-point single-step PDD method is outlined by
the following steps. The flow chart of this method is shown
in Fig. 2.

Step 1: Select an initial design vector d0. Define toler-
ances ε1 > 0, ε2 > 0, and ε3 > 0. Set the iteration
q = 1, d(q)

0 = (d
(q)

1,0 , . . . , d
(q)

M,0) = d0. Define

the subregion size parameters 0 < β
(q)
k ≤ 1,

k = 1, . . . , M , describing D(q) = ×k=M
k=1 [d(q)

k,0 −
β

(q)
k (dk,U − dk,L)/2, d

(q)

k,0 + β
(q)
k (dk,U − dk,L)/2].

Denote the subregion’s increasing history by a set
H(0) and set it to empty. Set two designs df = d0

and df,last �= d0 such that ||df − df,last ||2 > ε1.
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Fig. 2 A flow chart of the
multi-point single-step PDD
method

Step 2: At                , generate PDD and 
Fourier-polynomial approximations of 

response and score functions.

( )
0
q=d d

Step 3: Is new 
design feasible?

Step 4: Converge?

Step 6: Are conditions
for enlarging subregion size 

satisfied?

Step 9: Solve the RDO subproblem by single-
step PDD method. 

Step 5: Interpolate to 
obtain a new feasible 

design; reduce 
subregion size.

Stop1q q= +

Step 7: Is current design in 
the increasing histories? 

Step 8: Increase 
subregion and 

modify increasing 
history

Step 1: Initialize; set                . ( )
0 0
q =d d

Yes

Yes

Yes
Yes

No

No No

No

Set d(0)∗ = d0 , qf,last = 1 and qf = 1. Usu-
ally, a feasible design should be selected to be the
initial design d0. However, when an infeasible ini-
tial design is chosen, a new feasible design can be
obtained during the iteration if the initial subregion
size parameters are large enough.

Step 2: Select (q = 1) or use (q > 1) the PDD trunca-
tion parameters S and m. At d = d(q)

0 , generate the
PDD expansion coefficients, y∅(d) and Cuj|u|(d),
where ∅ �= u ⊆ {1, . . . , N}, 1 ≤ |u| ≤ S,
j|u| ∈ N

|u|
0 , ||j|u|||∞ ≤ m, j1, . . . , j|u| �= 0,

using dimension-reduction integration with R =
S, n = m+1, leading to S-variate, mth-order PDD
approximations ỹ

(q)
l,S,m(X) of yl(X) and c̃

(q)
l,S,m(d)

of cl(d), l = 0, 1, . . . , K , in (2). Calculate the
expansion coefficients of score functions, sk,∅(d)

and Dik,j (d), where k = 1, . . . , M and j =
1, . . . , m′, analytically, if possible, or numeri-
cally, resulting in m′th-order Fourier-polynomial
approximations of sk(Xik ; d), k = 1, . . . , M .

Step 3: If q = 1 and c̃
(q)
l (d(q)

0 ) < 0 for l = 1, . . . , K ,

then go to Step 4. If q > 1 and c̃
(q)
l (d(q)

0 ) < 0 for

l = 1, . . . , K , then set df,last = df , df = d(q)

0 ,
qf,last = qf , qf = q and go to Step 4. Otherwise,
go to Step 5.

Step 4: If ||df − df,last ||2 < ε1 or∣
∣
∣
[
c̃
(q)

0 (df ) − c̃
(qf,last)

0 (df,last)
]
/c̃

(q)

0 (df )

∣
∣
∣ < ε3,

then stop and denote the final optimal solution as
d̃∗ = df . Otherwise, go to Step 6.

Step 5: Compare the infeasible design d(q)

0 with the feasi-

ble design df and interpolate between d(q)

0 and df

to obtain a new feasible design and set it as d(q+1)

0 .
For dimensions with large differences between
d(q)

0 and df , interpolate aggressively. Reduce the
size of the subregion D(q) to obtain new subregion
D(q+1). For dimensions with large differences
between d(q)

0 and df , reduce aggressively. Also,
for dimensions with large differences between
the sensitivities of c̃

(q)
l,Sm(d(q)

0 ) and c̃
(q−1)
l,Sm (d(q)

0 ),
reduce aggressively. Update q = q + 1 and go to
Step 2.

Step 6: If the subregion size is small, that is, β
(q)
k (dk,U −

dk,L) < ε2, and d(q−1)∗ is located on the boundary
of the subregion, then go to Step 7. Otherwise, go
to Step 9.

Step 7: If the subregion centered at d(q)

0 has been enlarged

before, that is, d(q)

0 ∈ H(q−1), then set H(q) =
H(q−1) and go to Step 9. Otherwise, set H(q) =
H(q−1)

⋃{d(q)

0 } and go to Step 8.

Step 8: For coordinates of d(q)

0 located on the boundary of

the subregion and β
(q)
k (dk,U −dk,L) < ε2, increase

the sizes of corresponding components of D(q); for
other coordinates, keep them as they are. Set the
new subregion as D(q+1).

Step 9: Solve the design problem in (39) employing the
single-step PDD method. In so doing, recycle the
PDD expansion coefficients obtained from Step 2
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Table 1 Summary of features of the four proposed methods

Feature Direct PDD Single-step PDD Sequential PDD Multi-point single-step PDD

Design space Global Global Global Local

Frequency of PDD approximations Every iteration Only first iteration A few iterations For every subproblem

Problem solved in every iteration Original problem Original problem Original problem Subproblems

in (37) and (38), producing approximations of the
objective and constraint functions that stem from
single calculation of these coefficients. To evalu-
ate the gradients, recalculate the Fourier expansion
coefficients of score functions as needed. Denote
the optimal solution by d(q)∗ and set d(q+1)

0 = d(q)∗ .
Update q = q + 1 and go to Step 2.

Table 1 summarizes several features of all four design
methods developed in this work. It describes the design
space of a method, how many times a method requires the
PDD approximation, and whether the original problem or a
sequence of subproblems are solved.

6 Numerical examples

Four examples are presented to illustrate the PDD methods
developed in solving various RDO problems. The objective
and constraint functions are either elementary mathemat-
ical functions or relate to engineering problems, ranging
from simple structural to complex FEA-aided mechani-
cal designs. Both size and shape design problems are
included. In Examples 1–4, orthonormal polynomials, con-
sistent with the probability distributions of input random
variables, were used as bases. For the Gaussian distribution,
the Hermite polynomials were used. For random variables
following non-Gaussian probability distributions, such as
the Lognormal, Beta, and Gumbel distributions in Exam-
ple 2, the orthonormal polynomials were obtained either
analytically when possible or numerically, exploiting the
Stieltjes procedure (Rahman 2009a; Gautschi 2004). How-
ever, in Examples 3 and 4, the original random variables
were transformed into standard Gaussian random variables,
facilitating the use of classical Hermite polynomials as
orthonormal polynomials. The PDD truncation parameters
S and m vary, depending on the function or the example,
but in all cases the PDD expansion coefficients were cal-
culated using dimension-reduction integration with R = S

and the number of integration points n = m + 1. The
Gauss-quadrature rules are consistent with the polynomial
basis functions employed. Since the design variables are the
means of Gaussian random variables, the order m′ used for
Fourier expansion coefficients of score functions in Exam-
ples 1, 3, and 4 is one. However, in Example 2, where the
design variables describe both means and standard devia-

tions of random variables, m′ is two. The tolerances and
initial subregion size parameters are as follows: (1) ε =
0.001; ε1 = 0.1, ε2 = 2; ε3 = 0 (Example 3), ε3 =
0.005 (Example 4); and (2) β

(1)
1 = . . . = β

(1)
M = 0.5.

The optimization algorithm selected is sequential quadratic
programming (DOT 2001) in all examples.

6.1 Example 1: optimization of a mathematical function

Consider a mathematical example, studied by Lee et al.
(2009), involving two independent Gaussian random vari-
ables X1 and X2 and two design variables d1 = Ed[X1] and
d2 = Ed[X2], which requires to

min
d∈D

c0(d) =
√

vard [y0(X)]

15
,

subject to c1(d) = 3
√

vard [y1(X)] − Ed [y1(X)] ≤ 0,

1 ≤ d1 ≤ 10, 1 ≤ d2 ≤ 10, (40)

where

y0(X) = (X1 − 4)3 + (X1 − 3)4 + (X2 − 5)2 + 10 (41)

and

y1(X) = X1 + X2 − 6.45 (42)

are two random functions. The random variables X1 and
X2 have respective means d1 and d2, but the same stan-
dard deviation, which is equal to 0.4. The design vector
d = (d1, d2) ∈ D, where D = (1, 10) × (1, 10) ⊂ R

2.
Two proposed RDO methods, the direct PDD and single-

step PDD methods, were applied to solve this problem.
Since y0 and y1 are both univariate functions, only univari-
ate (S = 1) PDD approximations are required. The chosen
PDD expansion orders are m = 4 for y0 and m = 1 for
y1. The initial design vector d0 = (5, 5) and, correspond-
ingly,

√
vard0 [y0(X)] = 18.2987. The approximate optimal

solution is denoted by d̃∗ = (d̃∗
1 , d̃∗

2 ).
Table 2 summarizes the approximate optimal solutions,

including the numbers of design iterations and function
evaluations, by the two PDD methods. For comparison, the
results of a tensor product quadrature (TPQ) method and
Taylor series approximation, proposed by and obtained from
Lee et al. (2009), are also included. From Table 2, all four
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Table 2 Optimization results
for the mathematical example Results Method

Direct PDD Single-Step PDD TPQa Taylor seriesa

d̃∗
1 3.3508 3.3508 3.4449 3.4983

d̃∗
1 4.9856 4.9856 5.000 4.9992

c0(d̃∗)b 0.0756 0.0756 0.0861c 0.0902c

c1(d̃∗)b −0.1873 −0.1599 −0.2978c −0.3504c

√
vard̃

∗ [y0(X)]b 1.1340 1.1340 1.2915c 1.3535c

No. of iterations 5 5 4 4

No. of y0 evaluations 66 11 81 45

No. of y1 evaluations 30 5 81 45

aThe results of TPQ (DSA) and
Taylor series were obtained from
Lee et al. (2009)
bThe objective function,
constraint functions, and√

vard̃
∗ [y0(X)] were evaluated

exactly
cThe objective and constraint
functions of optimal designs by
TPQ (DSA) and Taylor series
were evaluated exactly

methods engender close optimal solutions in four to five
iterations. Hence, each method can be used to solve this
optimization problem. Both PDD versions yield identical
solutions due to the same truncation parameters selected.
However, the numbers of function evaluations required
to reach optimal solutions reduce dramatically when the
single-step PDD is employed. This is because a univariate
PDD approximation is adequate for the entire design space,
facilitating exact calculations of the expansion coefficients
by (37) and (38) for any design. In which case, the expan-
sion coefficients need to be calculated only once during all
design iterations. At respective optima, the exact values of
objective functions for the PDD methods are smaller than
those for the TPQ and first-order Taylor series methods. In
addition, the numbers of function evaluations by the direct
PDD or single-step PDD method are moderately or signifi-
cantly lower than those by the TPQ method. Therefore, the
PDD methods not only furnish a slightly better optimal solu-
tion, but also a more computationally efficient one than the
TPQ method, at least in this example. Although the total
numbers of function evaluations by the direct PDD and Tay-
lor series methods are similar, the single-step PDD method
is more efficient than the Taylor series method by almost a
factor of six.

6.2 Example 2: size design of a two-bar truss

The second example, studied by Ramakrishnan and Rao
(1996) and Lee et al. (2009), entails RDO of a two-bar truss
structure, as shown in Fig. 3. There are five independent ran-
dom variables, comprising the cross-sectional area X1, the
half-horizontal span X2, mass density X3, load magnitude
X4, and material yield (tensile) strength X5. Their probabil-
ity distributions are listed in Table 3. The design variables
are as follows: d1 = Ed[X1] and d2 = Ed[X2]. The objec-
tive is to minimize the second-moment properties of the
mass of the structure subject to constraints, limiting axial
stresses of both members at or below the yield strength of

the material with 99.875 % probability if yl , l = 1, 2, are
Gaussian. The RDO problem is formulated to

min
d∈D

c0(d) = 0.5
Ed [y0(X)]

10
+ 0.5

√
vard [y0(X)]

2
,

subject to c1(d) = 3
√

vard [y1(X)] − Ed [y1(X)] ≤ 0,

c2(d) = 3
√

vard [y2(X)] − Ed [y2(X)] ≤ 0

0.2 cm2 ≤ d1 ≤ 20 cm2, 0.1 m ≤ d2 ≤ 1.6 m,

(43)

where

y0(X) = X3X1

√
1 + X2

2, (44)

Fig. 3 A two-bar truss structure
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Table 3 Statistical properties of random input for the two-bar truss
problem

Random variable Mean Standard Probability

deviation distribution

Cross-sectional area (X1), cm2 d1 0.02d1 Gaussian

Half-horizontal span (X2), m d2 0.02d2 Gaussian

Mass density (X3), kg/m3 10,000 2,000 Beta

Load magnitude (X4), kN 800 200 Gumbel

Yield strength (X5), MPa 1,050 250 Lognormal

y1(X) = 1 −
5X4

√
1 + X2

2√
65X5

(
8

X1
+ 1

X1X2

)

, (45)

and

y2(X) = 1 −
5X4

√
1 + X2

2√
65X5

(
8

X1
− 1

X1X2

)

(46)

are three random response functions. The design vector
d = (d1, d2) ∈ D, where D = (0.2 cm2, 20 cm2) ×
(0.1 m, 1.6 m) ⊂ R

2. The initial design vector is d0 =
(10 cm2, 1 m). The corresponding mean and standard devi-
ation of y0(d0) at the initial design, calculated by crude
MCS simulation with 108 samples, are 14.1422 kg and
2.8468 kg, respectively. The approximate optimal solution
is denoted by d̃∗ = (d̃∗

1 , d̃∗
2 ).

Table 4 presents detailed optimization results generated
by the direct and sequential PDD methods, each entail-
ing univariate, bivariate, and trivariate PDD approximations
with m = 2, n = 3. The optimal solutions by all PDD

methods or approximations are very close to each other,
all indicating that the first constraint is active. Although
there are slight constraint violations (c1 > 0), they are
negligibly small. The results of bivariate and trivariate
PDD approximations confirm that the univariate solution by
either direct or sequential PDD method is valid and ade-
quate. However, the numbers of function evaluations step
up for higher-variate PDD approximations, as expected.
When the sequential PDD method is employed, the respec-
tive numbers of function evaluations diminish by a factor of
approximately two, regardless of the PDD approximation.
While this reduction is not as dramatic as the one found
in the single-step PDD method (Example 1), the sequen-
tial PDD method should still greatly improve the current
state-of-the-art of robust design.

Since this problem was also solved by the TPQ and
Taylor series methods, comparing their reported solutions
(Lee et al. 2009), listed in the last two columns of Table 4,
with the PDD solutions should be intriguing. It appears that
the TPQ method is also capable of producing a similar opti-
mal solution, but by incurring a computational cost more
than most of the PDD methods examined in this work. Com-
paring the numbers of function evaluations, the TPQ method
is more expensive than the univariate direct PDD method by
factors of three to seven. These factors grow into 7–17 when
graded against the univariate sequential PDD method. The
Taylor series method needs only 378 function evaluations,
which is slightly more than 288 function evaluations by the
univariate sequential PDD, but it violates the first constraint
by at least six times more than all PDD and TPQ methods.

When the expansion order and the number of Gauss-
quadrature points are increased to m = 3 and n = 4,

Table 4 Optimization results for the two-bar truss problem (m = 2, n = 3)

Results Direct Direct Direct Sequential Sequential Sequential TPQa Taylor

PDD PDD PDD PDD PDD PDD seriesa

(Univariate) (Bivariate) (Trivariate) (Univariate) (Bivariate) (Trivariate)

d̃∗
1 , cm2 11.4749 11.5561 11.5561 11.4811 11.5710 11.5714 11.5669 10.9573

d̃∗
2 , m 0.3781 0.3791 0.3791 0.3777 0.3753 0.3752 0.3767 0.3770

c0(d̃∗)b 1.2300 1.2392 1.2391 1.2306 1.2392 1.2392 1.2393 1.1741

c1(d̃∗)b 0.0172 0.0096 0.0096 0.0167 0.0097 0.0096 0.0095 0.0657

c2(d̃∗)b −0.4882 −0.4911 −0.4910 −0.4889 −0.4948 −0.4950 −0.4935 −0.4650

Ed̃
∗ [y0(X)]b, kg 12.2684 12.3591 12.3591 12.2732 12.3589 12.3598 12.3608 11.7105

√
vard̃

∗ [y0(X)]b, kg 2.4666 2.4851 2.4851 2.4677 2.4849 2.4850 2.4852 2.3542

No. of iterations 19 14 14 8 7 7 10 8

No. of y0 evaluations 190 518 896 80 259 448 594 108

Total no. of y1 & y2 494 1,876 4,900 208 938 2,450 3,564 270

evaluations

aThe results of TPQ (DSA) and Taylor series were obtained from Lee et al. (2009)
bThe objective and constraint functions, Ed̃

∗ [y0(X)], and
√

vard̃
∗ [y0(X)] at respective optima, were evaluated by crude MCS (108 samples)
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respectively, the corresponding optimization results by all
PDD, TPQ, and Taylor series methods are summarized in
Table 5. The optimal solutions do not change greatly and,
therefore, the results of Table 4 are adequate. However, the
numbers of function evaluations rise for each method, as
they should for larger m or n. In which case, the univariate
PDD methods are even more efficient than the TPQ method
by orders of magnitude.

6.3 Example 3: shape design of a three-hole bracket

The third example involves shape design optimization of
a two-dimensional, three-hole bracket, where nine random
shape parameters, Xi , i = 1, . . . , 9, describe its inner and
outer boundaries, while maintaining symmetry about the
central vertical axis. The design variables, dk = Ed[Xk],
i = 1, . . . ,9, are the means of these independent random
variables with Fig. 4a depicting the initial design of the
bracket geometry at the mean values of the shape param-
eters. The bottom two holes are fixed, and a deterministic
horizontal force F = 15,000 N is applied at the center of
the top hole. The bracket material has a deterministic mass
density ρ = 7,810 kg/m3, deterministic elastic modulus
E = 207.4 GPa, deterministic Poisson’s ratio ν = 0.3, and
deterministic uniaxial yield strength Sy = 800 MPa. The
objective is to minimize the second-moment properties of
the mass of the bracket by changing the shape of the geom-
etry such that the maximum von Mises stress σe,max(X)

does not exceed the yield strength Sy of the material with

99.875 % probability if y1 is Gaussian. Mathematically, the
RDO for this problem is defined to

min
d∈D

c0(d) = 0.5
Ed [y0(X)]

Ed0 [y0(X)]
+ 0.5

√
vard [y0(X)]

√
vard0 [y0(X)]

,

subject to c1(d) = 3
√

vard [y1(X)] − Ed [y1(X)] ≤ 0,

0 mm ≤ d1 ≤ 14 mm,

17 mm ≤ d2 ≤ 35 mm,

10 mm ≤ d3 ≤ 30 mm,

30 mm ≤ d4 ≤ 40 mm,

12 mm ≤ d5 ≤ 30 mm,

12 mm ≤ d6 ≤ 30 mm,

50 mm ≤ d7 ≤ 140 mm,

−15 mm ≤ d8 ≤ 10 mm,

−8 mm ≤ d9 ≤ 15 mm, (47)

where

y0(X) = ρ

∫

D′(X)

dD′ (48)

and

y1(X) = Sy − σe,max(X) (49)

Table 5 Optimization results for the two-bar truss problem (m = 3, n = 4)

Results Method

Direct Direct Direct Sequential Sequential Sequential TPQa Taylor

PDD PDD PDD PDD PDD PDD seriesa

(Univariate) (Bivariate) (Trivariate) (Univariate) (Bivariate) (Trivariate)

d̃∗
1 , cm2 11.5516 11.6439 11.6439 11.5650 11.6505 11.6498 11.6476 10.9573

d̃∗
2 , m 0.3805 0.3779 0.3779 0.3754 0.3763 0.3763 0.3767 0.3770

c0(d̃∗)b 1.2393 1.2481 1.2481 1.2386 1.2481 1.2481 1.2480 1.1741

c1(d̃∗)b 0.0095 0.0024 0.0025 0.0101 0.0024 0.0024 0.0025 0.0657

c2(d̃∗)b −0.4897 −0.4959 −0.4958 −0.4945 −0.4974 −0.4974 −0.4970 −0.4650

Ed̃
∗ [y0(X)]b, kg 12.3597 12.4480 12.4480 12.3538 12.4482 12.4477 12.4464 11.7150

√
vard̃

∗ [y0(X)]b, kg 2.4678 2.5025 2.5025 2.4836 2.5029 2.5028 2.5023 2.3542

No. of iterations 15 16 15 7 5 5 10 8

No. of y0 evaluations 195 976 1,875 91 305 625 2,503 108

Total no. of y1 & y2 510 3,616 11,070 238 1,130 3,690 15,018 270

evaluations

aThe results of TPQ (DSA) were obtained from Lee et al. (2009)
bThe objective and constraint functions, Ed̃

∗ [y0(X)], and
√

vard̃
∗ [y0(X)] at respective optima, were evaluated by crude MCS (108 samples)
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Fig. 4 A three-hole bracket;
a design parametrization; b von
Mises stress at initial design

are two random response functions, and Ed0[y0(X)] and
vard0[y0(X)] are the mean and variance, respectively, of y0

at the initial design d0 = (0, 30, 10, 40, 20, 20, 75, 0, 0)mm
of the design vector d = (d1, . . . , d9) ∈ D ⊂ R

9. The corre-
sponding mean and standard deviation of y0 of the original
design, calculated by first-order bivariate PDD method, are
0.3415 kg and 0.00140 kg, respectively. Figure 4b portrays
the contours of the von Mises stress calculated by FEA of
the initial bracket design, which comprises 11,908 nodes
and 3,914 eight-noded quadrilateral elements. A plane stress

condition was assumed. The approximate optimal solution
is denoted by d̃∗ = (d̃∗

1 , . . . , d̃∗
9 ).

Due to their finite bounds, the random variables Xi ,
i = 1, . . . , N , were assumed to follow truncated Gaussian
distributions with densities

fXi
(xi) =

⎧
⎪⎪⎨

⎪⎪⎩

φ(
xi−di

σi
)

�(Di) − �(−Di)
, ai ≤ xi ≤ bi,

0, otherwise,

(50)

Table 6 Optimization results
for the three-hole bracket Results Multi-point single-step PDD method

Univariate Univariate Univariate Bivariate

(S = 1, m = 1) (S = 1, m = 2) (S = 1, m = 3) (S = 2, m = 1)

d̃∗
1 , mm 12.8168 13.6828 13.9996 13.9936

d̃∗
2 , mm 17.0112 17.0071 17.5236 17.0133

d̃∗
3 , mm 26.6950 28.3935 28.8053 28.6254

d̃∗
4 , mm 30.1908 30.2860 30.0009 30.0083

d̃∗
5 , mm 12.0069 12.0003 12.0000 12.0000

d̃∗
6 , mm 12.0003 12.0000 12.0000 12.0000

d̃∗
7 , mm 118.1200 118.0900 117.4930 117.7929

d̃∗
8 , mm −13.7400 −13.8900 −13.8680 −13.9053

d̃∗
9 , mm 14.9124 14.9573 14.9991 14.9966

c̃0(d̃∗)a 0.6686 0.6430 0.6364 0.6602

c̃1(d̃∗)a −1.6671 −0.8289 −1.8599 −8.8978

Ed̃
∗ [y0(X)]a, kg 0.1230 0.1185 0.1181 0.1176

√
vard̃

∗ [y0(X)]a, kg 0.00137 0.00132 0.00130 0.00137

No. of iterations 42 43 36 39

No. of FEA 798 1,204 1,332 6,357

aThe objective and constraint
functions, Ed̃

∗ [y0(X)], and
√

vard̃
∗ [y0(X)] at respective

optima, were evaluated by
respective approximations
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where �(·) and φ(·) are the cumulative distribution and
probability density functions, respectively, of a standard
Gaussian variable; σi = √

vard[Xi] = √Ed[(Xi − di)2] =
0.2 is the standard deviation of Xi ; and ai = di − Di and
bi = di + Di are the lower and upper bounds, respec-
tively, of Xi . To avoid unrealistic designs, the bounds were
chosen to satisfy the following nine conditions: (1) D1 =
(d2 − d1 − 1)/2; (2) D2 = max[min{(d7 − d2 − 2)/2, (d4 −
d2−2)/2}, 2σ2]; (3) D3 = min{(d3−2)/2, (30−d3−2)/2};
(4) D4 = min{(d7 − d4 − 2)/2, (d4 − d1 − 2)/2}; (5) D5 =
(d5 − 11)/2; (6) D6 = (d6 − 11)/2; (7) D7 = min{(d7 −
d4 − 2)/2, (150 − d7 − 5)/2}; (8) D8 = max{(25.57 +
d8 − d9)/2, 2σ8}; and (9) D9 = max[min{(25.57 + d8 −
d9)/2, (12.912 + d9)/2}, 2σ9]. These conditions are consis-
tent with the bound constraints of design variables stated
in (47).

The proposed multi-point single-step PDD method was
applied to solve this problem, employing three univariate
and one bivariate PDD approximations for the underlying
stochastic analysis: (1) S = 1, m = 1; (2) S = 1, m = 2;

(3) S = 1, m = 3; and (4) S = 2, m = 1. Table 6 sum-
marizes the optimization results by all four choices of the
truncation parameters. The optimal design solutions rapidly
converge as S or m increases. The univariate, first-order
(S = 1, m = 1) PDD method, which is the most economical
method, produces an optimal solution reasonably close to
those obtained from higher-order or bivariate PDD methods.
For instance, the largest deviation from the average values of
the objective function at four optimum points is only 2.5 %.
It is important to note that the coupling between single-step
PDD and multi-point approximation is essential to find opti-
mal solutions of this practical problem using low-variate,
low-order PDD approximations.

Figure 5a–d illustrate the contour plots of the von Mises
stress for the four optimal designs at the mean values
of random shape parameters. Regardless of S or m, the
overall area of an optimal design has been substantially
reduced, mainly due to significant alteration of the inner
boundary and moderate alteration of the outer boundary
of the bracket. All nine design variables have undergone

Fig. 5 von Mises stress
contours at mean values of
optimal bracket designs by the
multi-point single-step PDD
method; a univariate
approximation (S = 1, m = 1);
b univariate approximation
(S = 1, m = 2); c univariate
approximation(S = 1, m = 3);
d bivariate approximation
(S = 2, m = 1)
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moderate to significant changes from their initial values.
The optimal masses of the bracket vary as 0.1230 kg, 0.1185
kg, 0.1181 kg, and 0.1186 kg—about a 65 % reduction
from the initial mass of 0.3415 kg. Compared with the
conservative design in Fig. 4b, larger stresses—for exam-
ple, 800 MPa—are safely tolerated by the final designs in
Fig. 5a–d.

6.4 Example 4: shape design of a lever arm

The final example demonstrates the usefulness of the RDO
methods advocated in designing an industrial-scale mechan-
ical component, known as a lever arm, commonly found
in wheel loaders, as shown in Fig. 6a. Twenty-two ran-
dom shape parameters, Xi, i = 1, . . . , 22, resulting from
manufacturing variability, describe the shape of a lever arm
in three dimensions, including two rounded quadrilateral
holes introduced to reduce the mass of the lever arm as

much as possible. The design variables, dk = Ed[Xk],
k = 1, . . . ,22, are the means of these independent random
variables, with Fig. 6b and c depicting the initial design of
the lever arm geometry at mean values of the shape param-
eters. The centers of the central and right circular holes are
fixed, and a deterministic horizontal force, F = 1,600 kN,
was applied at the center of the left circular hole with a
71.5◦ angle from the horizontal line, as shown in Fig. 6b.
These boundary conditions are determined from the inter-
action of the lever arm with other mechanical components
of the wheel loader. The lever arm is made of cast steel
with deterministic material properties, as follows: mass den-
sity ρ = 7,800 kg/m3, elastic modulus E = 203 GPa,
Poisson’s ratio ν = 0.3, fatigue strength coefficient σ ′

f =
1,332 MPa, fatigue strength exponent b = −0.1085, fatigue
ductility coefficient ε′

f = 0.375, and fatigue ductility
exponent c = −0.6354. The performance of the lever
arm was determined by its fatigue durability obtained by

Fig. 6 Fatigue durability
analysis of a lever arm in a
wheel loader; a two lever arms;
b design parametrization in front
view; c design parametrization
in top view
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(1) calculating maximum principal strain and mean stress at
a point; and (2) calculating the fatigue crack-initiation life
at that point from the well-known Coffin–Manson–Morrow
equation (Stephens and Fuchs 2001). The objective is to
minimize the second-moment properties of the mass of the
lever arm by changing the shape of the geometry such that
the minimum fatigue crack-initiation life Nmin(X) exceeds a
design threshold of Nc = 106 loading cycles with 99.875 %
probability if y1 is Gaussian. Mathematically, the RDO for
this problem is defined to

min
d∈D

c0(d) = 0.5
Ed [y0(X)]

Ed0 [y0(X)]
+ 0.5

√
vard [y0(X)]

√
vard0 [y0(X)]

,

subject to c1(d) = 3
√

vard [y1(X)] − Ed [y1(X)] ≤ 0,

382 mm ≤ d1 ≤ 458 mm,

532 mm ≤ d2 ≤ 563 mm,

1,075 mm ≤ d3 ≤ 1,185 mm,

152 mm ≤ d4 ≤ 178 mm,

305 mm ≤ d5 ≤ 795 mm,

55 mm ≤ d6 ≤ 357.5 mm,

241 mm ≤ d7 ≤ 630 mm,

435 mm ≤ d8 ≤ 689 mm,

241 mm ≤ d9 ≤ 630 mm,

850 mm ≤ d10 ≤ 1,023 mm,

818 mm ≤ d11 ≤ 1,131 mm,

850 mm ≤ d12 ≤ 1,013 mm,

818 mm ≤ d13 ≤ 1,131 mm,

702 mm ≤ d14 ≤ 748 mm,

637 mm ≤ d15 ≤ 755 mm,

816 mm ≤ d16 ≤ 888 mm,

637 mm ≤ d17 ≤ 755 mm,

1,006 mm ≤ d18 ≤ 1,116 mm,

239 mm ≤ d19 ≤ 447 mm,

947 mm ≤ d20 ≤ 1097 mm,

257 mm ≤ d21 ≤ 447 mm,

505 mm ≤ d22 ≤ 833 mm, (51)

where

y0(X) = ρ

∫

D′(X)

dD′ (52)

and

y1(X) = Nmin(X) − Nc (53)

are two random response functions, and Ed0[y0(X)] and
vard0[y0(X)] are the mean and variance, respectively, of
y0 at the initial design d0 = (450, 562, 1,075, 170, 795,
365, 630, 689, 630, 850, 818, 850, 818, 748, 637, 888,
637, 1,006, 447, 947, 447, 833)mm of the design vector

Fig. 7 An FEA mesh of a lever arm

d = (d1, . . . , d22) ∈ D ⊂ R
22. Figure 7 portrays the

FEA mesh for the initial lever arm design, which comprises
126,392 nodes and 75,114 ten-noded, quadratic, tetrahedral
elements.

As in Example 3, the random variables Xi, i =
1, . . . , 22, are truncated Gaussian and have probability den-
sities described by (50) with ai = di −Di and bi = di +Di

denoting the lower and upper bounds, respectively. To avoid
unrealistic designs, Di = 2 when i = 1, 2, 4, 14, 16, and
Di = 5 otherwise.

Fig. 8 Contours of logarithmic fatigue crack-initiation life at mean
shapes of the lever arm by the multi-point single-step PDD method;
a iteration 1; b iteration 3; c iteration 9; d iteration 15 (optimum)
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The proposed multi-point single-step PDD method was
applied to solve this lever arm design problem employing
only a univariate, first-order PDD approximation, that is,
selecting S = 1, m = 1, for second-moment analyses of y0

and y1. Figure 8a–d show the contour plots of the logarithm
of fatigue crack-initiation life at mean shapes of several
design iterations, including the initial design, throughout
the RDO process. Due to a conservative initial design, with
fatigue life contour depicted in Fig. 8a, the minimum fatigue
crack-initiation life of 1.068 × 1012 cycles is much larger
than the required fatigue crack-initiation life of a million
cycles. For the tolerance and subregion size parameters
selected, 15 iterations and 675 FEA led to a final optimal
design with the corresponding mean shape presented in Fig.
8d. The mean optimal mass of the lever arm is 1,263 kg—
about a 79 % reduction from the initial mass of 6,036 kg.
Correspondingly, the standard deviation of the mass drops
from 2.1031 to 1.8016 kg.

Figure 9a–d present the iteration histories of the objective
function, constraint function, and 22 design variables dur-
ing the RDO process. The objective function c0 is reduced
from 0.9838 at initial design to 0.5238 at optimal design, an

Table 7 Reductions in the mean and standard deviation of y0 from
initial to optimal designs

Example
Ed̃∗ [y0(X)]−Ed0 [y0(X)]

Ed0 [y0(X)]

√
vard̃∗ [y0(X)]−√

vard0 [y0(X)]√
vard0 [y0(X)]

1a Not applicable −93.80 %

2b −12.51 % −12.66 %

3c −65.07 % −4.35 %

4 −78.81 % −14.34 %

aThe value of Ed̃
∗ [y0(X)] and

√
vard̃

∗ [y0(X)] is the average of all

corresponding PDD results in Table 2
bThe value of Ed̃

∗ [y0(X)] and
√

vard̃
∗ [y0(X)] is the average of all

corresponding PDD results in Tables 4 and 5
cThe value of Ed̃

∗ [y0(X)] and
√

vard̃
∗ [y0(X)] is the average of all

corresponding PDD results in Table 6

almost 50 % change. At optimum, the constraint function
c1 is −0.0342 × 106 cycles and is, therefore, close to being
active. The design variables d5, d6, d7, d9, d19, and d21 have
undergone the most significant changes from their initial
values, prompting substantial modifications of the shapes or
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Fig. 9 RDO iteration histories for the lever arm; a objective function; b constraint function; c normalized design variables. Note: design variables
are normalized with respect to their initial values
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Table 8 Efficiency and applicability of the four proposed methods

Method Efficiency Applicability Comments

Direct PDD Low Both polynomial and non-polynomial Expensive due to recalculation of expansion coefficients.

functions with small design spaces Impractical for complex system designs.

Single-step PDD Highest Low-order polynomial functions with Highly economical due to recycling of expansion

small design spaces coefficients, but may produce premature solutions

for complex system designs.

Sequential PDD Medium Polynomial or non-polynomial functions More expensive than single-step PDD, but substantially

with small to medium design spaces more economical than direct PDD. May require

high-variate and high-order PDD approximations

for complex system designs.

Multi-point High Polynomial or non-polynomial functions Capable of solving complex, practical design problems

single-step PDD with large design spaces using low-variate and/or low-order PDD approximations.

sizes of the rounded quadrilateral holes and thickness of the
lever arm. The outer boundaries of the profile of the lever
arm, controlled by the design variables d1, d2, d3, and d4

have undergone slight changes, because the initial design
used is the result of a traditional deterministic optimiza-
tion. This final example demonstrates that the RDO methods
developed—in particular, the multi-point single-step PDD
method—are capable of solving industrial-scale engineer-
ing design problems using only a few hundred FEA.

Table 7 lists percentage changes in the mean and stan-
dard deviation of y0 from initial to optimal designs in all
four examples. The second-moment statistics at optimal
designs are averages of all PDD solutions described earlier.
Due to robust design, the largest reduction of the mean is
78.81 %, whereas the standard deviation diminishes by at
most 93.80 %. The moderate drop in the standard deviations
of Examples 2–4 is attributed to the objective function that
combines both the mean and standard deviation of y0.

7 Discussions

Since multiple methods and examples are presented in the
paper, it is useful to summarize the efficiency and appli-
cability of each method under different conditions. Table 8
presents such a summary, including a few qualitative com-
ments inspired by the examples of the preceding section.
Furthermore, the numerical results indicate the following:

(1) The direct and single-step PDD methods generate
identical optimal solutions for the polynomial func-
tions, but the latter method is substantially more
efficient than the former method;

(2) The direct and sequential PDD methods, both employ-
ing univariate, bivariate, and trivariate PDD approx-
imations, produce very close optimal solutions for
the non-polynomial functions, but at vastly differing
expenses. For either method, the univariate solution

is accurate and most economical, even though the
stochastic responses are multivariate functions. Given
a PDD approximation, the sequential PDD method fur-
nishes an optimal solution incurring at most half the
computational cost of the direct PDD method;

(3) For both polynomial and non-polynomial functions,
the TPQ method, although accurate, is more expen-
sive than most variants of the direct, single-step, and
sequential PDD methods examined. Considering the
non-polynomial functions, the univariate direct PDD
and univariate sequential PDD methods are more eco-
nomical than the TPQ method by an order of magni-
tude or more;

(4) The multi-point single-step PDD method employing
low-variate or low-order PDD approximations, includ-
ing a univariate, first-order PDD approximation, is
able to solve practical engineering problems with a
reasonable computational effort.

8 Conclusions

Four new methods are proposed for robust design opti-
mization of complex engineering systems. The methods
involve PDD of a high-dimensional stochastic response for
statistical moment analysis, a novel integration of PDD
and score functions for calculating the second-moment
sensitivities with respect to the design variables, and stan-
dard gradient-based optimization algorithms, encompassing
direct, single-step, sequential, and multi-point single-step
design processes. Because they are rooted in ANOVA
dimensional decomposition, the PDD approximations for
arbitrary truncations predict the exact mean and gener-
ate a convergent sequence of variance approximations for
any square-integrable function. When blended with score
functions, PDD leads to explicit formulae, expressed in
terms of the expansion coefficients, for approximating the
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second-moment design sensitivities that are also theoreti-
cally convergent. More importantly, the statistical moments
and design sensitivities are both determined concurrently
from a single stochastic analysis or simulation.

Among the four design methods developed, the direct
PDD method is the simplest of all, but requires re-
calculations of the expansion coefficients at each design
iteration and is, therefore, expensive, depending on the cost
of evaluating the objective and constraint functions and the
requisite number of design iterations. The single-step PDD
method eliminates the need to re-calculate the expansion
coefficients from scratch by recycling the old expansion
coefficients, consequently holding a potential to signifi-
cantly curtail the computational effort. However, it depends
heavily on the quality of a PDD approximation and the accu-
racy of the estimated expansion coefficients during design
iterations. The sequential PDD method upholds the merits
of both the direct and single-step PDD methods by re-
calculating the expansion coefficients a few times more than
the single-step PDD, incurring a computational complex-
ity that is lower than the direct PDD method. However, all
three methods just described are global and may not work
if the design space is too large for a PDD approximation,
with a chosen degree of interaction or expansion order, to
be sufficiently accurate. The multi-point single-step PDD
method mitigates this problem by adopting a local imple-
mentation of PDD approximations, where an RDO problem
with a large design space is solved in succession. Precisely
for this reason, the method is capable of solving practical
engineering problems using low-order and/or low-variate
PDD approximations of stochastic responses.
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