Approximation Errors for High-Dimensional Uncertainty Quantification

Sharif Rahman The University of Iowa, Iowa City, IA 52242

 $2012~{\rm AMCS~Seminar}$ Work supported by NSF (CMMI-1130147, CMMI-0969044)

- 1 INTRODUCTION
- 2 ADD APPROXIMATION
- 3 RDD APPROXIMATION
- 4 FINAL REMARKS

Uncertainty Quantification

Input
$$\boldsymbol{X} \in \mathbb{R}^N \to \boxed{ \begin{array}{c} \mathbf{MATH} \\ \mathbf{MODEL} \end{array}} \to \mathrm{Output} \ y(\boldsymbol{X}) \in \mathbb{R}$$
 $\boldsymbol{X} \sim (\Omega, \mathcal{F}, P); \ y \in \mathcal{L}_2(\Omega, \mathcal{F}, P)$

Objectives

- Statistical moments: $\mathbb{E}\left[y^l(\boldsymbol{X})\right] := \int_{\mathbb{R}^N} y^l(\boldsymbol{x}) f_{\boldsymbol{X}}(\boldsymbol{x}) d\boldsymbol{x}, \ l \in \mathbb{N}$
- Rare-event probability: $P[y(X) \in \Omega_F] = \int_{\mathbb{R}^N} I_{\Omega_F}(x) f_X(x) dx$
- Design in presence of uncertainties

Uncertainty Quantification

Input
$$\boldsymbol{X} \in \mathbb{R}^N o egin{array}{|c|c|c|c|c|} \boldsymbol{MATH} & \to \mathrm{Output} \ y(\boldsymbol{X}) \in \mathbb{R} \\ \boldsymbol{X} \sim (\Omega, \mathcal{F}, P); \ y \in \mathcal{L}_2(\Omega, \mathcal{F}, P) \end{array}$$

Objectives

- Statistical moments: $\mathbb{E}\left[y^l(\boldsymbol{X})\right]:=\int_{\mathbb{R}^N}y^l(\boldsymbol{x})f_{\boldsymbol{X}}(\boldsymbol{x})d\boldsymbol{x},\ l\in\mathbb{N}$
- Rare-event probability: $P[y(X) \in \Omega_F] = \int_{\mathbb{R}^N} I_{\Omega_F}(x) f_X(x) dx$
- Design in presence of uncertainties

Challenge/Motivation

High-dimensional input ($10 \le N \le 100$); exploit hidden structures for low-dimensional approximations

INTRODUCTION

$$y(X) = y_0 + \sum_{i=1}^{N} y_i(X_i) + \sum_{i_1, i_2 = 1; i_1 < i_2}^{N} y_{i_1 i_2}(X_{i_1}, X_{i_2}) + \dots + \sum_{i_1, \dots, i_s = 1, i_1 < \dots < i_s}^{N} y_{i_1 \dots i_s}(X_{i_1}, \dots, X_{i_s}) + \dots + y_{12 \dots N}(X_1, \dots, X_N)$$

$$\mathbf{X} = \{X_1, \dots, X_N\}^T; \text{ indep.; } X_i \sim f_i(x_i) \text{ on } (\Omega_i, \mathcal{F}_i, P_i)$$
$$w(\mathbf{x}) = \prod_{i=1}^N w_i(x_i); w_{-u}(\mathbf{x}_{-u}) := \prod_{i=1, i \neq u}^N w_i(x_i)$$

$$\begin{array}{rcl} y(\boldsymbol{X}) & = & \displaystyle \sum_{u \subseteq \{1, \dots, N\}} y_u(\boldsymbol{X}_u), \\ y_{\emptyset} & = & \displaystyle \int_{\mathbb{R}^N} y(\boldsymbol{x}) w(\boldsymbol{x}) d\boldsymbol{x}, \\ y_u(\boldsymbol{X}_u) & = & \displaystyle \int_{\mathbb{R}^{N-|u|}} y(\boldsymbol{X}_u, \boldsymbol{x}_{-u}) w_{-u}(\boldsymbol{x}_{-u}) d\boldsymbol{x}_{-u} - \sum_{v \subset u} y_v(\boldsymbol{X}_v) \end{array}$$

ANOVA Dimensional Decomposition (ADD)

Select:
$$w(\boldsymbol{x})d\boldsymbol{x} = f_{\boldsymbol{X}}(\boldsymbol{x})d\boldsymbol{x}$$

$$y(\boldsymbol{X}) = \sum_{u \subseteq \{1, \dots, N\}} y_{u,A}(\boldsymbol{X}_u),$$

$$y_{\emptyset,A} = \int_{\mathbb{R}^N} y(\boldsymbol{x}) f_{\boldsymbol{X}}(\boldsymbol{x}) d\boldsymbol{x},$$

$$y_{u,A}(\boldsymbol{X}_u) = \int_{\mathbb{R}^{N-|u|}} y(\boldsymbol{X}_u, \boldsymbol{x}_{-u}) f_{\boldsymbol{X}_{-u}}(\boldsymbol{x}_{-u}) d\boldsymbol{x}_{-u} - \sum_{v \in u} y_v(\boldsymbol{X}_v)$$

• Two Remarkable Properties

$$\mathbb{E}\left[y_{u,A}(\boldsymbol{X}_u)\right] = 0$$

$$\mathbb{E}\left[y_{u,A}(\boldsymbol{X}_u)y_{v,A}(\boldsymbol{X}_v)\right] = 0,$$

$$\emptyset \neq u, v \subseteq \{1, \cdots, N\}, \ u \neq v$$
Independent

ADD component functions are orthogonal, but are difficult to obtain as they involve high-dimensional integrals

Referential Dimensional Decomposition (RDD)

Select:
$$w(\boldsymbol{x}) d\boldsymbol{x} = \prod_{i=1}^{N} \delta(x_i - c_i) dx_i$$

$$\boldsymbol{c} = (c_1, \dots, c_N) \in \mathbb{R}^N$$

$$y(\boldsymbol{X}) = \sum_{u \subseteq \{1, \dots, N\}} y_{u,R}(\boldsymbol{X}_u; \boldsymbol{c}),$$
 $y_{\emptyset,A} = y(\boldsymbol{c}),$ $y_{u,R}(\boldsymbol{X}_u; \boldsymbol{c}) = y(\boldsymbol{X}_u, \boldsymbol{c}_{-u}) - \sum_{v \in u} y_{v,R}(\boldsymbol{X}_v; \boldsymbol{c})$

RDD component functions lack orthogonal features, but are easy to obtain as they involve only function evaluations

Truncated ADD & Variances

• S-variate ADD Approximation $(0 \le S < N)$

$$\hat{y}_{S,A}(\boldsymbol{X}) = \sum_{\substack{u \subseteq \{1, \dots, N\} \\ 0 \le |u| \le S}} y_{u,A}(\boldsymbol{X}_u)$$

• Approximate Variance

$$\hat{\sigma}_{S,A}^2 := \mathbb{E}\left(\hat{y}_{S,A}(\boldsymbol{X}) - y_{\emptyset,A}\right)^2 = \sum_{s=1}^{S} \sum_{\substack{\emptyset \neq u \subseteq \{1,\cdots,N\}\\|u|=s}} \sigma_u^2; \ \sigma_u^2 := \mathbb{E}\left[y_{u,A}^2(\boldsymbol{X}_u)\right]$$

• Exact Variance

$$\sigma^2 := \mathbb{E} \left(y(\boldsymbol{X}) - y_{\emptyset} \right)^2 = \sum_{s=1}^{N} \sum_{\substack{\emptyset \neq u \subseteq \{1, \dots, N\} \\ |u| = s}} \sigma_u^2$$

When $S \to N$, $\hat{\sigma}_{S,A}^2 \to \sigma^2$ (\mathcal{L}_2 convergence)

ADD Error

• S-variate ADD Error

$$e_{S,A} := \mathbb{E}\left[\left(y(oldsymbol{X}) - \hat{y}_{S,A}(oldsymbol{X})
ight)^2
ight] := \int_{\mathbb{R}^N} \left[y(oldsymbol{x}) - \hat{y}_{S,A}(oldsymbol{x})
ight]^2 f_{oldsymbol{X}}(oldsymbol{x}) doldsymbol{x}$$

Using orthogonal properties of ADD,

$$e_{S,A} = \sum_{s=S+1}^{N} \sum_{\substack{\emptyset \neq u \subseteq \{1,\cdots,N\}\\|u|=s}} \sigma_u^2$$

• Univariate (S = 1) & Bivariate (S = 2) ADD Errors

$$e_{1,A} = \sum_{s=2}^N \sum_{\substack{\emptyset \neq u \subseteq \{1,\cdots,N\}\\|u|=s}} \sigma_u^2; \quad e_{2,A} = \sum_{s=3}^N \sum_{\substack{\emptyset \neq u \subseteq \{1,\cdots,N\}\\|u|=s}} \sigma_u^2$$

ADD error completely eliminates the variance terms associated with S- and all lower-variate contributions

Optimality

• Other Approximation Errors

$$e_{S} := \mathbb{E}\left[\left(y(\boldsymbol{X}) - \hat{y}_{S}(\boldsymbol{X})\right)^{2}\right]$$

$$= \mathbb{E}\left[\left(\left\{y(\boldsymbol{X}) - \hat{y}_{S,A}(\boldsymbol{X})\right\} + \left\{\hat{y}_{S,A}(\boldsymbol{X}) - \hat{y}_{S}(\boldsymbol{X})\right\}\right)^{2}\right]$$

$$= \mathbb{E}\left[\left(y(\boldsymbol{X}) - \hat{y}_{S,A}(\boldsymbol{X})\right)^{2}\right] + \mathbb{E}\left[\left(\hat{y}_{S,A}(\boldsymbol{X}) - \hat{y}_{S}(\boldsymbol{X})\right)^{2}\right]$$

$$= e_{S,A} + \mathbb{E}\left[\left(\hat{y}_{S,A}(\boldsymbol{X}) - \hat{y}_{S}(\boldsymbol{X})\right)^{2}\right] \geq e_{S,A}$$

$$y(\boldsymbol{X}) - \hat{y}_{S,A}(\boldsymbol{X}) \rightarrow \text{higher than } S\text{-variate terms}$$

 $\hat{y}_{S,A}(\boldsymbol{X}) - \hat{y}_{S}(\boldsymbol{X}) \rightarrow \text{at most } S\text{-variate terms}$

• Other Approximation Errors

$$e_{S} := \mathbb{E}\left[\left(y(\boldsymbol{X}) - \hat{y}_{S}(\boldsymbol{X})\right)^{2}\right]$$

$$= \mathbb{E}\left[\left(\left\{y(\boldsymbol{X}) - \hat{y}_{S,A}(\boldsymbol{X})\right\} + \left\{\hat{y}_{S,A}(\boldsymbol{X}) - \hat{y}_{S}(\boldsymbol{X})\right\}\right)^{2}\right]$$

$$= \mathbb{E}\left[\left(y(\boldsymbol{X}) - \hat{y}_{S,A}(\boldsymbol{X})\right)^{2}\right] + \mathbb{E}\left[\left(\hat{y}_{S,A}(\boldsymbol{X}) - \hat{y}_{S}(\boldsymbol{X})\right)^{2}\right]$$

$$= e_{S,A} + \mathbb{E}\left[\left(\hat{y}_{S,A}(\boldsymbol{X}) - \hat{y}_{S}(\boldsymbol{X})\right)^{2}\right] \geq e_{S,A}$$

$$y(\boldsymbol{X}) - \hat{y}_{S,A}(\boldsymbol{X}) \to \text{higher than } S\text{-variate terms}$$
 $\hat{y}_{S,A}(\boldsymbol{X}) - \hat{y}_{S}(\boldsymbol{X}) \to \text{at most } S\text{-variate terms}$

ADD approximation is optimal in \mathcal{L}_2 sense

Truncated RDD

• S-variate RDD Approximation $(0 \le S < N)$

$$\widehat{y}_{S,R}(\boldsymbol{X};\boldsymbol{c}) = \sum_{\substack{u \subseteq \{1,\cdots,N\}\\0 \le |u| \le S}} y_{u,R}(\boldsymbol{X}_u;\boldsymbol{c})$$

• Direct Form (Xu and Rahman, 2004)

$$\hat{y}_{S,R}(\boldsymbol{X};\boldsymbol{c}) = \sum_{k=0}^{S} (-1)^k {N-S+k-1 \choose k} \sum_{\substack{u \subseteq \{1,\cdots,N\}\\|u|=S-k}} y(\boldsymbol{X}_u,\boldsymbol{c}_{-u}),$$

$$\boldsymbol{c}=(c_1,\cdots,c_N)\in\mathbb{R}^N$$

Special Cases

• Univariate RDD Approximation (S = 1)

$$\hat{y}_{1,R}(\boldsymbol{X};\boldsymbol{c}) = \sum_{i=1}^{N} y(X_i, \boldsymbol{c}_{-\{i\}}) - (N-1)y(\boldsymbol{c})$$

• Bivariate RDD Approximation (S = 2)

$$\hat{y}_{2,R}(\boldsymbol{X};\boldsymbol{c}) = \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} y(X_i, X_j, \boldsymbol{c}_{-\{i,j\}}) - (N-2) \sum_{i=1}^{N} y(X_i, \boldsymbol{c}_{-\{i\}}) + \frac{1}{2} (N-1)(N-2)y(\boldsymbol{c})$$

RDD Error

• S-variate RDD Error

$$egin{array}{ll} e_{S,R}(oldsymbol{c}) &:= & \mathbb{E}\left[(y(oldsymbol{X}) - \hat{y}_{S,R}(oldsymbol{X};oldsymbol{c}))^2
ight] \ &:= & \int_{\mathbb{R}^N}\left[y(oldsymbol{x}) - \hat{y}_{S,R}(oldsymbol{x};oldsymbol{c})
ight]^2 f_{oldsymbol{X}}(oldsymbol{x}) doldsymbol{x} \end{array}$$

• Expected S-variate RDD Error

If c is a randomly selected reference point with joint PDF $f_{X}(c)$, then

$$\begin{split} \mathbb{E}\left[e_{S,R}(\boldsymbol{c})\right] &:= \int_{\mathbb{R}^N} e_{S,R}(\boldsymbol{c}) f_{\boldsymbol{X}}(\boldsymbol{c}) d\boldsymbol{c} \\ &= \int_{\mathbb{R}^{2N}} \left[y(\boldsymbol{x}) - \hat{y}_{S,R}(\boldsymbol{x};\boldsymbol{c})\right]^2 f_{\boldsymbol{X}}(\boldsymbol{x}) f_{\boldsymbol{X}}(\boldsymbol{c}) d\boldsymbol{x} d\boldsymbol{c} \end{split}$$

RDD vs. ADD Errors (Univariate)

Theorem

Let c be a random vector with joint PDF of the form $f_{\mathbf{X}}(\mathbf{c}) = \prod_{i=1}^{j=N} f_j(c_j)$, where f_j is the marginal PDF of its jth coordinate. Then the expected error committed by the univariate RDD approximation for $2 \le N < \infty$ is

$$\mathbb{E}\left[e_{1,R}(\boldsymbol{c})\right] = \sum_{s=2}^{N} \left(s^2 - s + 2\right) \sum_{\substack{\emptyset \neq u \subseteq \{1, \dots, N\} \\ |u| = s}} \sigma_u^2,$$

where
$$\sigma_u^2 = \mathbb{E}[y_{u,A}^2(\boldsymbol{X}_u)], \emptyset \neq u \subseteq \{1, \dots, N\}.$$

RDD vs. ADD Errors (Univariate)

Theorem

Let c be a random vector with joint PDF of the form $f_{\mathbf{X}}(\mathbf{c}) = \prod_{i=1}^{j=N} f_j(c_j)$, where f_j is the marginal PDF of its jth coordinate. Then the expected error committed by the univariate RDD approximation for $2 \le N < \infty$ is

$$\mathbb{E}\left[e_{1,R}(\boldsymbol{c})\right] = \sum_{s=2}^{N} \left(s^2 - s + 2\right) \sum_{\substack{\emptyset \neq u \subseteq \{1,\dots,N\}\\|u|=s}} \sigma_u^2,$$

where
$$\sigma_u^2 = \mathbb{E}[y_{u,A}^2(\boldsymbol{X}_u)], \emptyset \neq u \subseteq \{1, \dots, N\}.$$

Corollary

$$4e_{1,A} \leq \mathbb{E}[e_{1,R}] \leq (N^2 - N + 2) e_{1,A}, \ 2 \leq N < \infty$$

RDD vs. ADD Errors (Bivariate)

Theorem

Let c be a random vector with joint PDF of the form $f_{\mathbf{X}}(c) = \prod_{j=1}^{j=N} f_j(c_j)$, where f_j is the marginal PDF of its jth coordinate. Then the expected error committed by the bivariate RDD approximation for $3 \leq N < \infty$ is

$$\mathbb{E}\left[e_{2,R}(\boldsymbol{c})\right] = \sum_{s=3}^{N} \frac{1}{4} \left(s^4 - 2s^3 - s^2 + 2s + 8\right) \sum_{\substack{\emptyset \neq u \subseteq \{1, \dots, N\}\\|u| = s}} \sigma_u^2,$$

where
$$\sigma_u^2 = \mathbb{E}[y_{u,A}^2(\boldsymbol{X}_u)], \emptyset \neq u \subseteq \{1, \dots, N\}.$$

RDD vs. ADD Errors (Bivariate)

Theorem

Let c be a random vector with joint PDF of the form $f_{\mathbf{X}}(c) = \prod_{j=1}^{j=N} f_j(c_j)$, where f_j is the marginal PDF of its jth coordinate. Then the expected error committed by the bivariate RDD approximation for $3 \le N < \infty$ is

$$\mathbb{E}\left[e_{2,R}(\boldsymbol{c})\right] = \sum_{s=3}^{N} \frac{1}{4} \left(s^4 - 2s^3 - s^2 + 2s + 8\right) \sum_{\substack{\emptyset \neq u \subseteq \{1, \dots, N\} \\ |u| = s}} \sigma_u^2,$$

where $\sigma_u^2 = \mathbb{E}[y_{u,A}^2(\boldsymbol{X}_u)], \emptyset \neq u \subseteq \{1, \dots, N\}.$

Corollary

$$8e_{2,A} \le \mathbb{E}\left[e_{2,R}\right] \le \frac{1}{4}\left(N^4 - 2N^3 - N^2 + 2N + 8\right)e_{2,A}, \ 3 \le N < \infty$$

Contrived Example

Consider a function of 100 variables with the following distribution of the variance terms: $\sum_{|u|=1} \sigma_u^2 = 0.999\sigma^2$, $\sum_{2 \le |u| \le 99} \sigma_u^2 = 0$, $\sum_{|u|=100} \sigma_u^2 = 0.001\sigma^2$, $0 < \sigma^2 < \infty$

ADD Errors

$$e_{1,A} = e_{2,A} = 0.001\sigma^2$$
 (negligible)

• Expected RDD Errors

$$\mathbb{E}\left[e_{1,R}(\boldsymbol{c})\right] \cong 9.9\sigma^2 \text{ (large)}$$

$$\mathbb{E}\left[e_{2,R}(\boldsymbol{c})\right] \cong 24,498\sigma^2 \text{ (enormous)}$$

A Contrived Example

Consider a function of 100 variables with the following distribution of the variance terms: $\sum_{|u|=1} \sigma_u^2 = 0.999\sigma^2$, $\sum_{2 < |u| < 99} \sigma_u^2 = 0$, $\sum_{|u| = 100} \sigma_u^2 = 0.001 \sigma^2$, $0 < \sigma^2 < \infty$

• ADD Errors

$$e_{1,A} = e_{2,A} = 0.001\sigma^2$$
 (negligible)

Expected RDD Errors

$$\mathbb{E}\left[e_{1,R}(\boldsymbol{c})\right] \cong 9.9\sigma^2 \text{ (large)}$$

$$\mathbb{E}\left[e_{2,R}(\boldsymbol{c})\right] \cong 24,498\sigma^2 \text{ (enormous)}$$

A higher-variate RDD approximation may commit a larger error than a lower-variate RDD approximation

RDD vs. ADD Errors (General)

Theorem

Let c be a random vector with joint PDF of the form $f_{\mathbf{X}}(\mathbf{c}) = \prod_{i=1}^{j=N} f_i(c_i)$, where f_i is the marginal PDF of its jth coordinate. Then the expected error committed by the S-variate RDD approximation for $0 \le S \le N$, $S+1 \le N \le \infty$ is

RDD APPROXIMATION

$$\mathbb{E}\left[e_{S,R}(\boldsymbol{c})\right] = \sum_{s=S+1}^{N} \left[1 + \sum_{k=0}^{S} {s-S+k-1 \choose k}^{2} {s \choose S-k}\right] \sum_{\substack{\emptyset \neq u \subseteq \{1,\dots,N\}\\|u|=s}} \sigma_{u}^{2},$$

where $\sigma_u^2 = \mathbb{E}[y_{u,A}^2(\boldsymbol{X}_u)], \emptyset \neq u \subseteq \{1, \dots, N\}.$

RDD error eliminates S- and all lower-variate contributions, but with a stronger dependence on higher-variate terms

RDD vs. ADD Errors (General)

Corollary

The lower and upper bounds of the expected error $\mathbb{E}[e_{S,R}]$ from the S-variate RDD approximation, expressed in terms of the error $e_{S,A}$ from the S-variate ADD approximations, are

$$2^{S+1}e_{S,A} \le \mathbb{E}\left[e_{S,R}\right] \le \left[1 + \sum_{k=0}^{S} \binom{N-S+k-1}{k}^2 \binom{N}{S-k}\right] e_{S,A},$$

$$0 \le S < N < \infty.$$

ADD approximations are exceedingly more precise than RDD approximations at higher-variate truncations

Corollary

The expected error $\mathbb{E}\left[e_{N-1,R}\right]$ from the best RDD approximation, expressed in terms of the error $e_{N-1,A}$ from the best ADD approximation, where the best approximations are obtained by setting S=N-1, is

$$\mathbb{E}[e_{N-1,R}] = 2^N e_{N-1,A}, \ 1 \le N < \infty.$$

The best RDD approximation error can be significantly larger than the best ADD approximation error

Conclusions

- New formulae for expected errors from various RDD approximations
- S-variate RDD error is at least 2^{S+1} times greater than the S-variate ADD error
- ADD approximation is optimal
- RDD approximation should be used with caution

Conclusions

- New formulae for expected errors from various RDD approximations
- S-variate RDD error is at least 2^{S+1} times greater than the S-variate ADD error
- ADD approximation is optimal
- RDD approximation should be used with caution

Future Works (Ph.D. topics)

- Dependent probability measures of random input (does ADD exist? with what properties?)
- Rare event probability (reliability, stochastic optimization)
- Adaptivity/sparsity (how to select S? how to pick y_u ?)
- Multiplicative & hybrid dimensional decompositions

