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Uncertainty Quantification

MATH

N
Input X ¢ R — MODEL

— Output y(X) € R

XN(Qaf7P>7 yE‘CQ(QafaP)

e Objectives

o Statistical moments: E [y'(X)] := [pv y'(z)fx (2)dz, | €N
o Rare-event probability: P [y(X) € Qp]= [pn o, (z)fx(z)dz

e Design in presence of uncertainties
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Input X € RY — — Output y(X) € R

e Objectives
o Statistical moments: E [y'(X)] := [pv y'(z)fx (2)dz, | €N
o Rare-event probability: P [y(X) € Qp]= [pn o, (z)fx(z)dz

e Design in presence of uncertainties

Challenge/Motivation

High-dimensional input (10 < N < 100); exploit hidden
structures for low-dimensional approximations
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Dimensional Decomposition (Hoeffding, 1948)

N N
y(X) = y0+ZyZ(XZ)+ Z y’iliz(Xi17Xi2)+"'+
i=1

11,12=1;11 <ig

N
Z Yig ooty (Xigs o5 Xig )+ +y2.v (X1, -+, X)

1,0, is =10 < <ds

X ={Xy,---,Xy}T; indep.; X; ~ fi(z;) on (Qy, Fi, P;)
w(z) = [T wi(m:); wou(@_u) =TTy g, wil:)

y(X) = Y wu(Xw),
uC{1,,N}
w = Jpvy(@)w(z)de,
yu(Xy) = /RNul Y( Xy, T_w)w_y(x_o)dT_yy — Zyv(Xv)
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ANOVA Dimensional Decomposition (ADD)
Select: w(x)dx=fx(x)dx

y(X) = Z yu,A(Xu)7

uC{1,,N}

Yo,A = /RN y(z)fx (z)dz,
TE SR INTe ST NCINIEIES S &

vCu

o Two Remarkable Properties

E [yu,a(Xu)] =0
Independent

E [yu,A(Xu)yv,A(Xv)] =0, X
Q)?é/U”’Ug{l)"' aN}a U,#’U

ADD component functions are orthogonal, but are difficult to
obtain as they involve high-dimensional integrals
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Referential Dimensional Decomposition (RDD)

Select: w(w)dwznﬁvzl 0(x; — ¢;)da;

c=(c, - ,cy) ERY

y(X) = Z yu,R(Xu;c)a

uac—u E va

vCu

RDD component functions lack orthogonal features, but are
easy to obtain as they involve only function evaluations
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Truncated ADD & Variances
e S-variate ADD Approximation (0 < .S < N)

:’A/S,A(X) = Z yu,A(Xu)
uC{l,,N}
0<|ul<S

e Approximate Variance

BB A - =Y Y ol otim E[y2.4(X.)]
s=1 0£uC{l, N}
|u|=s

o Exact Variance
AeEGX) =Y Y

=1 0#uC{l, N}
|ul=s

When S — N, 6% 4, — 02 (L2 convergence)
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ADD Error

@ S-variate ADD Error
s =B [(y(X) = 55,4(X))?] = fon [9(®) — G5.4(2)]2 fx (2) da

Using orthogonal properties of ADD,

N
sa= ), ), o

|ul=s

e Univariate (S = 1) & Bivariate (S =2) ADD Errors

N N
2. _ 2
€1,A = E E Ous €2,A= E E ou
lu|=s |ul=s

ADD error completely eliminates the variance terms associated
with S- and all lower-variate contributions



Optimality

o Other Approximation Errors

es = E|(y(X) - gs(X))]
= E|({y(X) - #5.4(X)} + {35,4(X) = 55(X)})’]
E | (4(X) = §5.4(X))| +E [(75,4(X) = 35(X))’]

= esa+E[(I5.4(X) — §5(X))] > es.a

y(X) — ys,a(X) — higher than S—variate terms

Us,a(X) — ys(X) — at most S—variate terms
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Optimality

o Other Approximation Errors

es = E|(y(X) - gs(X))]
= E|({y(X) - #5.4(X)} + {35,4(X) = 55(X)})’]
E | (4(X) = §5.4(X))| +E [(75,4(X) = 35(X))’]

= esa+E[(I5.4(X) — §5(X))] > es.a

y(X) — §s,4(X) — higher than S—variate terms
Us,a(X) — ys(X) — at most S—variate terms

ADD approximation is optimal in Lo sense J
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Truncated RDD

e S-variate RDD Approximation (0 < S < N)

@S,R(X; C) = Z yu,R(Xu; C)
uC{1,-,N}
0</ul<8

e Direct Form (Xu and Rahman, 2004)

S

ySR X c :Z N S+k 1) Z y(XUaC—u)a

k=0 uC{1, N}
|ul=S—k

c=(c, - ,cy) €RN
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Special Cases

@ Univariate RDD Approximation (S = 1)
N
nea(Xie)=>Y y(Xic ) — (N —1y(e)
=1

e Bivariate RDD Approximation (S = 2)

N-1 N N
QQ,R(X§ c) = Z Z Y Xu y C— {1]} ZZ/ Xi, e {}
7,:11 j=i+1 =1

5 (N = 1N =2)y(e)

[\]
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RDD Error

e S-variate RDD Error

esn(c) = E [(y(X) ~ Bs.(X; €))?

= Jon (@) = 9s,r(2; ¢)) fx (z)da

e Expected S-variate RDD Error

If ¢ is a randomly selected reference point with joint PDF
fX(C)7 then

Eles,r(c)] = [pn CSR(C)fx(C)dc
= Jpen [y(2) — Us,r(2; o) fx(x)fx(c)dzde
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RDD vs. ADD Errors (Univariate)

Theorem

Let ¢ be a random vector with joint PDF' of the form
fx(e) = ng{vf](cj), where f; is the marginal PDF of its jth
coordinate. Then the expected error committed by the univariate
RDD approximation for 2 < N < oo is
N
Ee1,r(c)] = (s> —5+2) Z o2,
5=2 PAuC{l, - N}

|ul=s

where oy, = B[y 4(Xu)], 0#uC{1,---,N}.
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RDD vs. ADD Errors (Univariate)

Theorem

Let ¢ be a random vector with joint PDF' of the form

fx(e) = ng{vf](cj), where f; is the marginal PDF of its jth
coordinate. Then the expected error committed by the univariate
RDD approximation for 2 < N < oo is

Ele1,r(c)]

I
—
V)

[N}
|
V)
+
\V]
~
Q
%N}

where oy, = B[y 4(Xu)], 0#uC{1,---,N}.

Corollary

dey a SE[el,R] < (NZ—N—i-Q) e1,4, 2< N < o0
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RDD vs. ADD Errors (Bivariate)

Theorem
Let c bea mndom vector with joint PDF of the form

fx(e) = H — J(c]) where f; is the marginal PDF of its jth
coordinate. Then the expected error committed by the bivariate
RDD approxzimation for 3 < N < oo is

N
E[ez,r(c)] = (54 — 253 — 524+ 25+ 8) Z o2,
s=3 @#ug{lva}
|ul=s

e

where 02 =E[y2 ,(X.)], 0 #u C {1,--- ,N}.
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RDD vs. ADD Errors (Bivariate)

Theorem
Let c bea mndom vector with joint PDF of the form

fx(e) = H — J(c]) where f; is the marginal PDF of its jth
coordinate. Then the expected error committed by the bivariate
RDD approxzimation for 3 < N < oo is

N
E[ez,r(c)] = (54 — 253 — 524+ 25+ 8) Z o2,
s=3 @#ug{lva}
|ul=s

e

where 02 = Ely2 4(X.)], 0 #u C {1,---,N}.

Corollary

—_
w
A\

8es.a < E[ea R gZ(N4—2N —~N?+2N +8)e34, 3< N < x

v
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A Contrived Example

Consider a function of 100 variables with the following
distribution of the variance terms: >, 02 =0.99902,

D o<|ul<99 o2 =0, > jul=100 02 =0.00106%, 0 < 02 < 00
e ADD Errors
e1,A = €4 = 0.00102 (negligible)
e Expected RDD Errors
E[e1 r(c)] = 9.90% (large)

E [e2,r(c)] = 24,49802 (enormous)
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A Contrived Example

Consider a function of 100 variables with the following
distribution of the variance terms: >, 02 =0.99952,

D o<|ul<99 o2 =0, > jul=100 02 =0.00106%, 0 < 02 < 00
e ADD Errors
e1,A = €4 = 0.00102 (negligible)
e Expected RDD Errors
E[e1 r(c)] = 9.90% (large)

E [e2,r(c)] = 24,49802 (enormous)

A higher-variate RDD approximation may commit a larger
error than a lower-variate RDD approximation J
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RDD vs. ADD Errors (General)

Theorem
Let cbea mndom vector with joint PDF of the form

fx(e) =10 ](CJ), where f; is the marginal PDF of its jth
coordinate. Then the expected error committed by the S-variate RDD
approzimation for 0 < S < N, §+1< N < o0 is

lu|=s

where op, = Elys 4(Xu)], 0 #u C{1,---,N}.

RDD error eliminates S- and all lower-variate contributions,
but with a stronger dependence on higher-variate terms
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RDD vs. ADD Errors (General)

Corollary

The lower and upper bounds of the expected error E [eg g] from
the S-variate RDD approximation, expressed in terms of the
error eg A from the S-variate ADD approximations, are

S 2
N-S+k-1 N
(T ()

25%leg 4 <Eleg g <

0<S <N <.

ADD approximations are exceedingly more precise than RDD
approximations at higher-variate truncations
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RDD vs. ADD Errors (General)

Corollary
The expected error Eley_1 g| from the best RDD
approximation, expressed in terms of the error ex_1,4 from the

best ADD approximation, where the best approximations are
obtained by setting S = N — 1, is

Elen—1,r] =2Yen_1,4, 1 < N < o0.

The best RDD approximation error can be significantly larger
than the best ADD approximation error



FINAL REMARKS
o

Conclusions

e New formulae for expected errors from various RDD
approximations

o S-variate RDD error is at least 25*! times greater than the
S-variate ADD error

e ADD approximation is optimal

e RDD approximation should be used with caution
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o
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e New formulae for expected errors from various RDD
approximations

o S-variate RDD error is at least 25*! times greater than the
S-variate ADD error

e ADD approximation is optimal

e RDD approximation should be used with caution

Future Works (Ph.D. topics)

e Dependent probability measures of random input (does
ADD exist? with what properties?)

e Rare event probability (reliability, stochastic optimization)

o Adaptivity /sparsity (how to select S? how to pick y,?)

e Multiplicative & hybrid dimensional decompositions
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