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Abstract

This paper presents a novel hybrid polynomial dimensional decomposition (PDD) method for stochastic computing in high-
dimensional complex systems. When a stochastic response does not possess a strongly additive or a strongly multiplicative structure
alone, then the existing additive and multiplicative PDD methods may not provide a sufficiently accurate probabilistic solution of
such a system. To circumvent this problem, a new hybrid PDD method was developed that is based on a linear combination of
an additive and a multiplicative PDD approximation, a broad range of orthonormal polynomial bases for Fourier-polynomial ex-
pansions of component functions, and a dimension-reduction or sampling technique for estimating the expansion coefficients. Two
numerical problems involving mathematical functions or uncertain dynamic systems were solved to study how and when a hybrid
PDD is more accurate and efficient than the additive or multiplicative PDD. The results show that the univariate hybrid PDD method
is slightly more expensive than the univariate additive or multiplicative PDD approximations, but it yields significantly more ac-
curate stochastic solutions than the latter two methods. Therefore, the univariate truncation of the hybrid PDD is ideally suited
to solving stochastic problems that may otherwise mandate expensive bivariate or higher-variate additive or multiplicative PDD
approximations. Finally, a coupled acoustic-structural analysis of a pickup truck subjected to 46 random variables was performed,
demonstrating the ability of the new method to solve large-scale engineering problems.
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1. Introduction

Polynomial dimensional decomposition (PDD) is a hierarchi-
cal and convergent expansion of a general, high-dimensional
stochastic response function in terms of polynomial functions
of input variables with increasing dimensions [1–4]. The de-
composition ameliorates the curse of dimensionality [5] to
some extent by developing an input-output behavior of complex
systems with low effective dimensions [6], wherein the degrees
of interactions between input variables attenuate rapidly or van-
ish altogether. However, the original PDD, referred to as the ad-
ditive PDD (A-PDD) in this paper, constitutes a sum of lower-
dimensional component functions and is, therefore, predicated
on an additive nature of a multivariate function decomposition.
In contrast, when a response function is of a multiplicative na-
ture, suitable multiplicative-type decompositions, such as the
factorized PDD (F-PDD) [7], should be explored. Nonetheless,
A-PDD or F-PDD is relevant as long as the dimensional hier-
archy of a stochastic response is also additive or multiplicative.
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Unfortunately, the dimensional structure of a response function,
in general, is not known a priori. Therefore, indiscriminately
using A-PDD or F-PDD for general stochastic analysis is not
desirable. Further complications may arise when a complex
system exhibits a response that is dominantly neither additive
nor multiplicative. In the latter case, hybrid approaches cou-
pling both additive and multiplicative decompositions, prefer-
ably selected optimally, are needed. For such decompositions,
it is unknown which truncation parameter should be selected
when compared with that for A-PDD or F-PDD. More specif-
ically, is it possible for the univariate truncation of a hybrid
decomposition to produce stochastic solutions that are as good
as or close to those obtained from higher-variate truncations of
A-PDD or F-PDD? If the answer is yes, then a significant cost
saving for high-dimensional uncertainty quantification is antic-
ipated. That is the principal motivation of this work.

This paper presents a new hybrid PDD method for solv-
ing general high-dimensional stochastic problems commonly
encountered in engineering and applied sciences. Section 2
provides a brief exposition of the existing additive and mul-
tiplicative PDD approximations, setting the stage for the new
method developed. The hybrid PDD method, optimally blend-
ing A-PDD and F-PDD approximations, is described in Sec-
tion 3 along with the second-moment properties of the resul-
tant approximation. Section 4 focuses on the univariate hy-
brid approximation, resulting in explicit formulae for the hybrid
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model parameters and second-moment statistics. The mean-
squared error analyses pertaining to univariate A-PDD, F-PDD,
and hybrid PDD approximations are also discussed. Section 5
explains dimension-reduction integration and the quasi Monte
Carlo method for calculating the PDD expansion coefficients.
Section 6 presents two numerical examples for illustrating the
accuracy, efficiency, and convergence properties of the hybrid
PDD method. In Section 7, a large, complex engineering prob-
lem, entailing coupled acoustic-structural analysis of a pickup
truck, is solved using the hybrid PDD method. Finally, conclu-
sions are drawn in Section 8.

2. Polynomial Dimensional Decomposition

Let N, N0, R, and R+
0 represent the sets of positive integer

(natural), non-negative integer, real, and non-negative real num-
bers, respectively. For k ∈ N, denote by Rk the k-dimensional
Euclidean space, by Nk

0 the k-dimensional multi-index space,
and by Rk×k the set of k × k real-valued matrices. These stan-
dard notations will be used throughout the paper.

Let (Ω,F , P) be a complete probability space, where Ω is
a sample space, F is a σ-field on Ω, and P : F → [0, 1]
is a probability measure. With BN representing the Borel σ-
field on RN , N ∈ N, consider an RN-valued random vector
X := (X1, · · · , XN) : (Ω,F ) → (RN ,BN), which describes the
statistical uncertainties in all system and input parameters of a
high-dimensional stochastic problem. The probability law of
X is completely defined by its joint probability density func-
tion fX : RN → R+

0 . Assuming independent coordinates of
X, its joint probability density fX(x) = Πi=N

i=1 fi(xi) is expressed
by a product of marginal probability density functions fi of
Xi, i = 1, · · · ,N, defined on the probability triple (Ωi,Fi, Pi)
with a bounded or an unbounded support on R. For a given
u ⊆ {1, · · · ,N}, fX−u (x−u) :=

∏N
i=1,i<u fi(xi) defines the marginal

density function of X−u := X{1,··· ,N}\u.
Let y(X) := y(X1, · · · , XN), a real-valued, measurable trans-

formation on (Ω,F ), define a high-dimensional stochastic re-
sponse of interest and L2(Ω,F , P) represent a Hilbert space
of square-integrable functions y with respect to the induced
generic measure fX(x)dx supported on RN . The ANOVA di-
mensional decomposition (ADD), expressed by the recursive
form [8–10]

y(X) =
∑

u⊆{1,··· ,N}

yu(Xu), (1)

y∅ =

∫
RN

y(x) fX(x)dx, (2)

yu(Xu) =

∫
RN−|u|

y(Xu, x−u) fX−u (x−u)dx−u −
∑
v⊂u

yv(Xv), (3)

is a finite, hierarchical expansion in terms of its input variables
with increasing dimensions, where u ⊆ {1, · · · ,N} is a subset
with the complementary set −u = {1, · · · ,N}\u and cardinality
0 ≤ |u| ≤ N, and yu is a |u|-variate component function describ-
ing a constant or the interactive effect of Xu = (Xi1 , · · · , Xi|u| ),
1 ≤ i1 < · · · < i|u| ≤ N, a subvector of X, on y when |u| = 0
or |u| > 0. The summation in Equation (1) comprises 2N terms,

with each term depending on a group of variables indexed by
a particular subset of {1, · · · ,N}, including the empty set ∅. In
Equation (3), (Xu, x−u) denotes an N-dimensional vector whose
ith component is Xi if i ∈ u and xi if i < u. When u = ∅, the
sum in Equation (3) vanishes, resulting in the expression of the
constant function y∅ in Equation (2). When u = {1, · · · ,N},
the integration in Equation (3) is on the empty set, reproducing
Equation (1) and hence finding the last function y{1,··· ,N}. Indeed,
all component functions of y can be obtained by interpreting lit-
erally Equation (3).

The ADD component functions yu, u ⊆ {1, · · · ,N}, are
uniquely determined from the annihilating conditions [8–10],∫

R
yu(xu) fi(xi)dxi = 0 for i ∈ u, (4)

resulting in two remarkable properties: (1) the component func-
tions, yu, ∅ , u ⊆ {1, · · · ,N}, have zero means; and (2) two
distinct component functions yu and yv, where u ⊆ {1, · · · ,N},
v ⊆ {1, · · · ,N}, and u , v, are orthogonal [10]. However, the
ADD component functions are difficult to obtain because they
require calculation of high-dimensional integrals.

2.1. Additive PDD

Let {ψi j(Xi); j = 0, 1, · · · } be a set of orthonormal poly-
nomial basis functions in the Hilbert space L2(Ωi,Fi, Pi)
that is consistent with the probability measure Pi of Xi.
For a given ∅ , u = {i1, · · · , i|u|} ⊆ {1, · · · ,N}, 1 ≤

|u| ≤ N, 1 ≤ i1 < · · · < i|u| ≤ N, denote a prod-
uct probability triple by (×p=|u|

p=1 Ωip ,×
p=|u|
p=1 Fip ,×

p=|u|
p=1 Pip ), and

the associated space of square integrable |u|-variate compo-
nent functions of y by L2(×p=|u|

p=1 Ωip ,×
p=|u|
p=1 Fip ,×

p=|u|
p=1 Pip ) :=

{yu :
∫
R|u| y

2
u(xu) fXu (xu)dxu < ∞}, which is a Hilbert

space. Since the joint density of (Xi1 , · · · , Xi|u| ) is separa-
ble (independence), i.e., fXu (xu) =

∏|u|
p=1 fip (xip ), the prod-

uct polynomial ψuj|u| (Xu) :=
∏|u|

p=1 ψip jp (Xip ), where j|u| =

( j1, · · · , j|u|) ∈ N|u|0 , a |u|-dimensional multi-index with ∞-norm∥∥∥j|u|
∥∥∥
∞

:= max( j1, · · · , j|u|), constitutes an orthonormal basis in
L2(×p=|u|

p=1 Ωip , ×
p=|u|
p=1 Fip , ×

p=|u|
p=1 Pip ). Two important properties of

these product polynomials from the tensor product of Hilbert
spaces are as follows.

Proposition 1. The product polynomials ψuj|u| (Xu), ∅ , u ⊆
{1, · · · ,N} have zero means, that is,

E
[
ψuj|u| (Xu)

]
= 0. (5)

Proposition 2. Two distinct product polynomials ψuj|u| (Xu) and
ψvk|v| (Xv), where ∅ , u ⊆ {1, · · · ,N}, ∅ , v ⊆ {1, · · · ,N},
j1, · · · , j|u| , 0, k1, · · · , k|v| , 0, are uncorrelated and each has
unit variance, that is,

E
[
ψuj|u| (Xu)ψvk|v| (Xv)

]
=

{
1 if u = v; j|u| = k|v|,
0 otherwise. (6)

From the standard Hilbert space theory, every non-constant
component function yu ∈ L2(×p=|u|

p=1 Ωip ,×
p=|u|
p=1 Fip , ×

p=|u|
p=1 Pip ) of y
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can be expanded as [1, 2]

yu(Xu) =
∑

j|u|∈N|u|0
j1,··· , j|u|,0

Cuj|u|ψuj|u| (Xu), ∅ , u ⊆ {1, · · · ,N}, (7)

with

Cuj|u|:=
∫
RN

y(x)ψuj|u| (xu) fX(x)dx, ∅ ,u⊆{1, · · · ,N}, j|u| ∈N|u|0 , (8)

representing the corresponding expansion coefficient. Note that
the summation in Equation (7) precludes j1, · · · , j|u| = 0, that
is, the individual degree of each variable Xi in ψuj|u| , i ∈ u cannot
be zero since yu is a strictly |u|-variate function and has a zero
mean. The end result of combining Equations (1) and (7) is the
A-PDD [1, 2],

y(X) = y∅ +
∑

∅,u⊆{1,··· ,N}

∑
j|u|∈N|u|0

j1,··· , j|u|,0

Cuj|u|ψuj|u| (Xu), (9)

providing an exact, hierarchical expansion of y in terms of
an infinite number of coefficients or orthonormal polynomi-
als. Using Propositions 1 and 2, all component functions yu,
∅ , u ⊆ {1, · · · ,N} in Equation (7) are found to satisfy the
annihilating conditions of the ADD. Therefore, A-PDD can be
viewed as the polynomial version of ADD and is, therefore, en-
dowed with all desirable properties of ADD.

In many physical and engineering applications, the function y
can be approximated by a sum of at most S -variate component
functions, where 1 ≤ S ≤ N, resulting in the S -variate, mth-
order A-PDD approximation

ỹS ,m(X) = y∅ +
∑

∅,u⊆{1,··· ,N}
1≤|u|≤S

∑
j|u|∈N|u|0 ,‖j|u|‖∞≤m

j1,··· , j|u|,0

Cuj|u|ψuj|u| (Xu), (10)

containing
∑S

k=0

(
N

S−k

)
mS−k number of A-PDD coefficients and

corresponding orthonormal polynomials. Due to its additive
structure, the approximation in Equation (10) includes degrees
of interaction among at most S input variables Xi1 , · · · , XiS ,
1 ≤ i1 ≤ · · · ≤ iS ≤ N. For instance, by selecting S = 1
and 2, the functions, ỹ1,m and ỹ2,m, respectively, provide uni-
variate and bivariate mth-order approximations, contain contri-
butions from all input variables, and should not be viewed as
first- and second-order approximations, nor do they limit the
nonlinearity of y. Depending on how the component functions
are constructed, arbitrarily high-order univariate and bivariate
terms of y could be lurking inside ỹ1,m and ỹ2,m. When S → N
and m→ ∞, ỹS ,m converges to y in the mean-square sense, per-
mitting Equation (10) to generate a hierarchical and convergent
sequence of approximations of y.

Applying the expectation operator on ỹS ,m(X) and (ỹS ,m(X) −
y∅)2 and noting Propositions 1 and 2, the mean [11]

E
[
ỹS ,m(X)

]
= y∅ (11)

of the S -variate, mth-order A-PDD approximation matches the
exact mean E

[
y(X)

]
, regardless of S or m, and the approximate

variance [11]

σ̃2
S ,m := E

[(
ỹS ,m(X) − E

[
ỹS ,m(X)

])2
]

=
∑

∅,u⊆{1,··· ,N}
1≤|u|≤S

∑
j|u|∈N|u|0 ,‖j|u|‖∞≤m

j1,··· , j|u|,0

C2
uj|u| (12)

is calculated as the sum of squares of the expansion coefficients
from the S -variate, mth-order A-PDD approximation of y(X).
It is elementary to show that the approximate variance in Equa-
tion (12) approaches the exact variance of y when S → N and
m → ∞ [11]. The mean-square convergence of ỹS ,m is guaran-
teed as y, and its component functions are all members of the
associated Hilbert spaces.

For the special case of S = 1, the univariate A-PDD approx-
imation

ỹ1,m(X) = y∅ +

N∑
i=1

m∑
j=1

Ci jψi j(Xi) (13)

of y(X) yields the exact mean

E
[
ỹ1,m(X)

]
= y∅, (14)

and an approximate variance

σ̃2
1,m := E

[(
ỹ1,m(X) − E

[
ỹ1,m(X)

])2
]

=

N∑
i=1

m∑
j=1

C2
i j (15)

that depends on m < ∞.

2.2. Factorized PDD
The factorized dimensional decomposition of the multivari-

ate function

y(X) =
∏

u⊆{1,··· ,N}

[1 + zu(Xu)], (16)

where zu, u ⊆ {1, · · · ,N} are various component functions of
input variables with increasing dimensions. Like the sum in
Equation (1), the product in Equation (16) comprises 2N terms,
with each term depending on a group of variables indexed by
a particular subset of {1, · · · ,N}, including the empty set ∅.
This multiplicative decomposition exists and is unique for any
square-integrable function y ∈ L2(Ω,F , P) with a non-zero
mean. Tunga and Demiralp [12] originally proposed this de-
composition, calling it factorized high-dimensional model rep-
resentation. Subsequently, Yadav and Rahman [7], and Rahman
[13] derived a recursive relationship between the component
functions of ANOVA and factorized dimensional decomposi-
tions, as described by Theorem 1, leading to F-PDD.

Theorem 1. The recursive relationships between component
functions of the ANOVA and factorized dimensional decomposi-
tions of a non-zero mean, square-integrable function y : RN →

R, represented by Equations (1) and (16), respectively, are

1 + zu(Xu) =

∑
v⊆u

yv(Xv)∏
v⊂u

[1 + zv(Xv)]
, u ⊆ {1, · · · ,N}. (17)
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Proof. See Theorem 8 of Yadav and Rahman [7] or Theorem
3.4 of Rahman [13].

Applying Equation (7) into Equation (17) and then combin-
ing with Equation (16) forms the F-PDD of

y(X) = y∅
∏

∅,u⊆{1,··· ,N}



y∅ +
∑
∅,v⊆u

∑
j|v|∈N|v|0

j1,··· , j|v|,0

Cvj|v|ψvj|v| (Xv)

∏
v⊂u

[1 + zv(Xv)]


, (18)

as an exact representation of y(X), where infinite orthonor-
mal polynomials of increasing dimensions are structured with a
multiplicative hierarchy, as opposed to the additive hierarchy in
Equation (9). Consequently, an S -variate, mth-order F-PDD ap-
proximation, retaining at most S -variate component functions
and mth-order orthogonal polynomials, becomes

ŷS ,m(X) = y∅
∏

∅,u⊆{1,··· ,N}
1≤|u|≤S



y∅ +
∑
∅,v⊆u

∑
j|v|∈N|v|0 ,‖j|u|‖∞≤m

j1,··· , j|v|,0

Cvj|v|ψvj|v| (Xv)

∏
v⊂u

[1 + zv(Xv)]


.

(19)

It is elementary to show that the S -variate, mth-order F-PDD
approximation converges to y(X) in the mean-square sense
when S → N and m→ ∞.

Unlike Equations (11) and (12), the mean and variance of
ŷS ,m(X), respectively defined as

E
[
ŷS ,m(X)

]
:=

∫
RN

ŷS ,m(x) fX(x)dx (20)

and

σ̂2
S ,m := E

[(
ŷS ,m(X) − E

[
ŷS ,m(X)

])2
]

:=
∫
RN

(
ŷS ,m(x) − E

[
ŷS ,m(X)

])2 fX(x)dx, (21)

do not produce closed-form or analytic expressions in terms of
y∅ and Cuj|u| if S is selected arbitrarily. This is a drawback of
F-PDD when compared with A-PDD. Having said so, they are
easily estimated by sampling methods, such as quasi and crude
Monte Carlo simulations (MCS), or even numerical integration
if N is not overly large.

When S = 1, the univariate F-PDD approximation,

ŷ1,m(X) = y∅

 N∏
i=1

1 +
1
y∅

m∑
j=1

Ci jψi j(Xi)


 , (22)

forms a product of univariate polynomials. Equation (22) re-
sults in the exact mean

E
[
ŷ1,m(X)

]
= y∅, (23)

and an approximate variance

σ̂2
1,m := E

[(
ŷ1,m(X) − E

[
ŷ1,m(X)

])2
]

= y2
∅

 N∏
i=1

1 +
1
y2
∅

m∑
j=1

C2
i j

 − 1

 (24)

that are valid for an arbitrary m < ∞.

3. Hybrid PDD

When a desired stochastic response exhibits neither a dom-
inantly additive nor a dominantly multiplicative nature, then a
mixed approach that optimally combines A-PDD and F-PDD
approximations is needed. Two linear hybrid approximations
are proposed.

3.1. Hybrid Approximations
Given S -variate, mth-order additive PDD and factorized

PDD approximations ỹS ,m (X) and ŷS ,m (X), let

ȳS ,m
(
X;αS ,m, βS ,m, . . .

)
:=

y∅ if S = 0,
h
(
ỹS ,m (X) , ŷS ,m (X) ;αS ,m, βS ,m, . . .

)
if 1 ≤ S < N,

y (X) if S = N, m→ ∞,

(25)

define a general, S -variate, mth-order hybrid PDD approxima-
tion of y (X), where h is a chosen model function such that
E

[
ȳS ,m

(
X;αS ,m, βS ,m, . . .

)]
= y∅ and αS ,m, βS ,m, . . . are the as-

sociated model parameters. Define the zero-mean functions

w (X) := y (X) − y∅, (26)

w̃S ,m (X) := ỹS ,m (X) − y∅, (27)

ŵS ,m (X) := ŷS ,m (X) − E
[
ŷS ,m (X)

]
, (28)

and

w̄S ,m
(
X;αS ,m, βS ,m, . . .

)
:= ȳS ,m

(
X;αS ,m, βS ,m, . . .

)
− y∅, (29)

that will be used throughout this section. Theorem 2 and
Corollary 1 describe two optimal linear hybrid approximations
ȳS ,m

(
X;αS ,m, βS ,m

)
and ȳ′S ,m

(
X;α′S ,m, β

′
S ,m

)
for 1 ≤ S < N,

m < ∞, both producing the exact mean y∅. The two hybrid
approximations have their zero-mean counterparts defined as

w̄S ,m
(
X;αS ,m, βS ,m

)
:= ȳS ,m

(
X;αS ,m, βS ,m

)
− y∅ (30)

and

w̄′S ,m
(
X;α′S ,m

)
:= ȳ′S ,m

(
X;α′S ,m

)
− y∅. (31)

Theorem 2. Given integers 1 ≤ S < N < ∞ and 1 ≤ m <
∞, let w̃S ,m (X) and ŵS ,m (X) represent zero-mean, S -variate,
mth-order additive PDD and factorized PDD approximations
with variances σ̃2

S ,m := E
[
ỹS ,m (X) − y∅

]2
= E

[
w̃2

S ,m (X)
]

and

σ̂2
S ,m := E

[
ŷS ,m (X) − y∅

]2
= E

[
ŵ2

S ,m (X)
]
, respectively, of a
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real-valued, zero-mean, square-integrable function w (X). Then
there exists an optimal, linear, S -variate, mth-order hybrid
PDD approximation

w̄S ,m
(
X;αS ,m, βS ,m

)
= αS ,mw̃S ,m (X) + βS ,mŵS ,m (X) (32)

of w (X), where

αS ,m =

σ̂2
S ,mE

[
w (X) w̃S ,m (X)

]
− E

[
w̃S ,m (X) ŵS ,m (X)

]
E

[
w (X) ŵS ,m (X)

]
σ̃2

S ,mσ̂
2
S ,m −

(
E

[
w̃S ,m (X) ŵS ,m (X)

])2 ,

(33)

βS ,m =

σ̃2
S ,mE

[
w (X) ŵS ,m (X)

]
− E

[
w̃S ,m (X) ŵS ,m (X)

]
E

[
w (X) w̃S ,m (X)

]
σ̃2

S ,mσ̂
2
S ,m −

(
E

[
w̃S ,m (X) ŵS ,m (X)

])2 .

(34)

Proof. For a square-integrable function w (X), define a second-
moment error

ēS ,m := E
[
w (X) − w̄S ,m

(
X;αS ,m, βS ,m

)]2 (35)

committed by its S -variate, mth-order hybrid PDD approxima-
tion w̄S ,m

(
X;αS ,m, βS ,m

)
. For ēS ,m to be minimum, set

∂ēS ,m

∂αS ,m
= 0,

∂ēS ,m

∂βS ,m
= 0.

(36)

Exchanging the orders of differential and expectation opera-
tors and substituting the expression of w̄S ,m

(
X;αS ,m, βS ,m

)
from

Equation (32) yields

αS ,mE
[
w̃2

S ,m (X)
]

+ βS ,mE
[
w̃S ,m (X) ŵS ,m (X)

]
= E

[
w (X) w̃S ,m (X)

]
,

αS ,mE
[
w̃S ,m (X) ŵS ,m (X)

]
+ βS ,mE

[
ŵ2

S ,m (X)
]

= E
[
w (X) ŵS ,m (X)

]
.

(37)

Noting σ̃2
S ,m = E

[
w̃2

S ,m (X)
]

and σ̂2
S ,m = E

[
ŵ2

S ,m (X)
]
, the solu-

tion Equations (37) produces the expressions of αS ,m and βS ,m

as in Equations (33) and (34), proving the theorem.

Corollary 1. Constraining the sum of two model parameters to
be unity in Equation (32) through (37) creates another optimal,
linear, S -variate hybrid approximation

w̄′S ,m
(
X;α′S ,m

)
= α′S ,mw̃S ,m (X) +

(
1 − α′S ,m

)
ŵS ,m (X) (38)

of w (X), 1 ≤ S < N < ∞, m < ∞, where the optimal model
parameter

α′S ,m =
E

[{
w (X) − ŵS ,m (X)

} {
w̃S ,m (X) − ŵS ,m (X)

}]
E

[
w̃S ,m (X) − ŵS ,m (X)

]2 . (39)

Proof. For a square-integrable function w (X), define another
second-moment error

ē′S ,m := E
[
w (X) − w̄′S ,m

(
X;α′S ,m

)]2
(40)

owing to its S -variate, mth-order hybrid PDD approximation
w̄′S ,m

(
X;α′S ,m

)
. For ē′S ,m to be minimum, set

∂ē′S ,m
∂α′S ,m

= 0. (41)

Again, swapping the orders of differential and expectation op-
erators, and substituting the expression of w̄′S ,m

(
X;α′S ,m

)
from

Equation (38) results in the expression of α′S ,m as in Equation
(39), proving the corollary.

Remark 1. The second hybrid approximation w̄′S ,m for S = 1
or 2 presented in Corollary 1 coincides with that proposed by
Tunga and Demiralp [12]. However, the first hybrid approxima-
tion w̄S ,m − that is, Theorem 2 − is new. Furthermore, the two
approximations, w̄S ,m and w̄′S ,m, are not the same for a general
truncation 2 ≤ S < N. See a recent work of Rahman [13] for
distinction between these two linear models, including a non-
linear variant, not discussed in this paper for brevity.

Remark 2. The hybrid PDD approximations exist for any
function y or w with a finite variance. The approximations,
w̄S ,m

(
X;αS ,m, βS ,m

)
and w̄′S ,m

(
X;α′S ,m

)
, for a given 1 ≤ S <

N < ∞, and 1 ≤ m < ∞, can exactly reproduce the origi-
nal zero-mean function w (X) under the following two condi-
tions: (1) If the original function is endowed with a purely ad-
ditive structure, i.e., w (X) = w̃S ,m (X), then Equations (33),
(34), and (39) yield αS ,m = α′S ,m = 1, and βS ,m = 0, which
in turn results in w̄S ,m (X) = w̄′S ,m (X) = w̃S ,m (X) = w (X); (2)
If the original function possesses a purely multiplicative struc-
ture, i.e., w (X) = ŵS ,m (X), then Equations (33), (34), and
(39) produce αS ,m = α′S ,m = 0 and βS ,m = 1, and therefore
w̄S ,m (X) = w̄′S ,m (X) = ŵS ,m (X) = w (X).

3.2. Second-moment properties
Applying the expectation operator on Equations (32) and

(38) yields the exact mean

E
[
ȳS ,m

(
X;αS ,m, βS ,m

)]
= E

[
ȳ′S ,m

(
X;α′S ,m

)]
= y∅, (42)

by both the hybrid approximations. However, their respec-
tive variances, obtained by applying the expectation operator
on w̄S ,m

(
X;αS ,m, βS ,m

)2 and w̄′S ,m
(
X;α′S ,m, β

′
S ,m

)2
, respectively,

vary according to

σ̄2
S ,m := E

[
w̄2

S ,m
(
X;αS ,m, βS ,m

)]
= α2

S ,mσ̃
2
S ,m + β2

S ,mσ̂
2
S ,m

+2αS ,mβS ,mE
[
w̃S ,m (X) ŵS ,m (X)

]
(43)

and

σ̄′2S ,m := E
[
w̄′2S ,m

(
X;α′S ,m

)]
= α′2S ,mσ̃

2
S ,m +

(
1 − α′S ,m

)2
σ̂2

S ,m

+2α′S ,m
(
1 − α′S ,m

)
E

[
w̃S ,m (X) ŵS ,m (X)

]
. (44)
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Compared with the additive and factorized PDD approxima-
tions, the hybrid PDD approximations proposed require expec-
tation of product of w̃S ,m (X) and ŵS ,m (X) to calculate the vari-
ance.

4. Univariate Hybrid PDD Approximation

At the root of developing the PDD methods lies the principal
motive of achieving high accuracy in calculating the probabilis-
tic characteristics of high-dimensional random responses while
keeping the computational efforts to a minimum. This objective
was attained through foresaking the inefficient higher-variate
expansions and applying only univariate hybrid PDD approxi-
mations in solving high-dimensional stochastic problems. Con-
sidering the key advantage of high efficiency of a univariate
additive [1] and factorized PDD [7] approximations, only the
univariate hybrid PDD method was implemented in this work.
Proposition 3 formally describes the univariate hybrid PDD ap-
proximation.

Proposition 3. A linear, univariate, mth-order hybrid PDD ap-
proximation of w (X), obtained by setting S = 1 in Equations
(32)-(34), is

w̄1,m
(
X;α1,m, β1,m

)
= α1,mw̃1,m (X) + β1,mŵ1,m (X) (45)

where the model parameters

α1,m =
σ̂2

1,m − E
[
w (X) ŵ1,m (X)

]
σ̂2

1,m − σ̃
2
1,m

(46)

and

β1,m =
E

[
w (X) ŵ1,m (X)

]
− σ̃2

1,m

σ̂2
1,m − σ̃

2
1,m

. (47)

Proof. Consider the univariate, mth-order additive and factor-
ized PDD approximations,

w̃1,m (X) =

N∑
i=1

m∑
j=1

Ci jψi j(Xi), (48)

ŵ1,m (X) = y∅

 N∏
i=1

1 +
1
y∅

m∑
j=1

Ci jψi j(Xi)


 − y∅, (49)

of

w (X) =
∑

∅,u⊆{1,··· ,N}

∑
j|u|∈N|u|0

j1,··· , j|u|,0

Cuj|u|ψuj|u| (Xu). (50)

From Propositions 1 and 2,

E
[
w (X) w̃1,m (X)

]
= E

[
w̃1,m (X) ŵ1,m (X)

]
=

N∑
i=1

m∑
j=1

C2
i j = σ̃2

1,m. (51)

Applying Equation (51) to Equations (33) and (34), the model
parameters for S = 1 and m < ∞ are obtained as in Equations
(46) and (47).

Remark 3. The two parameters α1,m and β1,m of the hybrid
model described by Equation (45) add up to one. This is due to
special properties of w̃1,m (X) and ŵ1,m (X) expressed in Equa-
tions (48) and (49). Therefore, the hybrid model described by
Equation (38) at univariate truncation (S = 1) is redundant, as it
leads to the same solution of the first model described by Equa-
tion (45).

Since β1,m = 1 − α1,m, let

w̄1,m
(
X;α1,m

)
:= ȳ1,m

(
X;α1,m

)
− y∅

= α1,mw̃1,m (X) +
(
1 − α1,m

)
ŵ1,m (X) (52)

denote the univariate hybrid PDD approximation of
w (X). The mean of w̄1,m

(
X;α1,m

)
is zero and, therefore,

E
[
ȳ1,m

(
X;α1,m

)]
= y∅, matching the exact mean of y (X). The

variance of w̄1,m
(
X;α1,m

)
or ȳ1,m

(
X;α1,m

)
is

σ̄2
1,m := E

[
w̄2

1,m
(
X;α1,m

)]
=

(
2α1,m − α

2
1,m

)
σ̃2

1,m +
(
1 − α1,m

)2 σ̂2
1,m, (53)

which is a linear combination of the variances from univari-
ate additive PDD and univariate factorized PDD approxima-
tions. The variances σ̃2

1,m and σ̂2
1,m, expressed by Equations

(15) and (24), are obtained from the univariate PDD expansion
coefficients. However, determining the model parameter α1,m
involves evaluation of an N-dimensional integral that will incur
additional computational expense in excess of the computations
performed for estimating the PDD expansions coefficients. A
quasi MCS was employed for estimating the model parameters,
described as follows.

4.1. Calculation of the hybrid model parameter

The basic idea of a quasi MCS is to replace the random or
pseudo-random samples in crude MCS by well-chosen deter-
ministic samples that are highly equidistributed [14]. The qausi
MCS samples are often selected from a low-discrepancy se-
quence [14–17] or by lattice rules [18] to minimize the inte-
gration errors. The estimation of the expectation of the multi-
variate function w (X) ŵ1,m (X), which is a high-dimensional
integral, comprises three simple steps: (1) generate a low-
discrepancy point set PL := {u(k) ∈ [0, 1]N , k = 1, · · · , L} of
size L ∈ N; (2) map each sample from PL to the sample x(k) ∈

RN following the probability measure of the random input X;
and (3) approximate the expectation as E

[
w (X) ŵ1,m (X)

]
�

1
L
∑L

k=1

[
w

(
x(k)

)
ŵ1,m

(
x(k)

)]
. Thus, using quasi MCS, the model

parameter is given by

α1,m �

σ̂2
1,m −

1
L

L∑
k=1

[
w

(
x(k)

)
ŵ1,m

(
x(k)

)]
σ̂2

1,m − σ̃
2
1,m

, (54)

where σ̂2
1,m and σ̃2

1,m are obtained from Equations (15) and (24).

However, when σ̂2
1,m = E

[
ŵ2

1,m (X)
]

and σ̃2
1,m = E

[
w̃2

1,m (X)
]
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are also estimated from a quasi MCS method, then the model
parameter can also be obtained from

α1,m �

1
L

L∑
k=1

[
ŵ2

1,m

(
x(k)

)]
−

1
L

L∑
k=1

[
w

(
x(k)

)
ŵ1,m

(
x(k)

)]
1
L

L∑
k=1

[
ŵ2

1,m

(
x(k)

)]
−

1
L

L∑
k=1

[
w̃2

1,m

(
x(k)

)] . (55)

The well-known Koksma–Hlawka inequality reveals that the
error committed by a quasi MCS is bounded by the variation
of the integrand in the sense of Hardy and Krause and the
star-discrepancy, a measure of uniformity, of the point set PL

[14]. Therefore, constructing a point set with star-discrepancy
as small as possible and seeking variance reduction of the in-
tegrand are vital for the success of the quasi MCS. It should
be mentioned here that many authors, including Halton [15],
Faure [16], Niederreiter [14], Sobol [17], and Wang [19], have
extensively studied how to generate the best low-discrepancy
point sets and sequences and to engender variance reduction.
For a bounded variation of the integrand, the quasi MCS has a
theoretical error bound O(L−1(log L)N compared with the prob-
abilistic error bound O(N−1/2) of crude MCS, indicating signif-
icantly faster convergence of the quasi MCS than crude MCS.

Both Equations (54) and (55) were employed for estimating
α1,m in this work. Further details, clarifying which equation is
used, are given in the Numerical Examples section.

4.2. Error analysis

Given the univariate truncation (S = 1), which approxima-
tion stemming from additive PDD, factorized PDD, and hybrid
PDD is more accurate? Lemma 1 and Theorem 3 address this
question.

Lemma 1. Given an integer 1 ≤ m < ∞, the variance of the
univariate factorized PDD approximation ŷ1,m (X) is greater
than or equal to the variance of the univariate additive PDD
approximation ỹ1,m (X), that is,

σ̂2
1,m ≥ σ̃

2
1,m.

Proof. From Equation (24),

σ̂2
1,m = y2

∅

 N∏
i=1

1 +
1
y2
∅

m∑
j=1

C2
i j

 − 1


=

N∑
i=1

m∑
j=1

C2
i j + y2

∅

N∑
s=2

∑
∅,u⊆{1,··· ,N}
|u|=s

∏
i∈u

1
y2
∅

m∑
j=1

C2
i j

≥ σ̃2
1,m, (56)

where the last line follows from Equation (15) and the recogni-
tion that the second term of the second line is non-negative.

Theorem 3. Let y (X) be a real-valued, square-integrable func-
tion with ỹ1,m (X), ŷ1,m (X), and ȳ1,m (X) denoting its univariate
additive PDD, univariate factorized PDD, and univariate hy-
brid PDD approximations, respectively, with σ̃2

1,m, σ̂2
1,m, and

σ̄2
1,m as the variances obtained from respective approximations.

If

ẽ1,m := E
[
y (X) − ỹ1,m (X)

]2
= E

[
w (X) − w̃1,m (X)

]2 , (57)

ê1,m := E
[
y (X) − ŷ1,m (X)

]2
= E

[
w (X) − ŵ1,m (X)

]2 , (58)

and

ē1,m := E
[
y (X) − ȳ1,m (X)

]2
= E

[
w (X) − w̄1,m (X)

]2 (59)

are the mean-squared errors committed by univariate additive
PDD, univariate factorized PDD, and univariate hybrid PDD,
respectively, in calculating σ2, the variance of y (X), then,

ē1,m ≤ ẽ1,m

and

ē1,m ≤ ê1,m.

Proof. From Equations (57) and (59),

ẽ1,m = σ2 − σ̃2
1,m (60)

and

ē1,m = E
[
w2 (X)

]
+ E

[
w̄2 (X)

]
− 2E

[
w (X) w̄1,m (X)

]
= σ2 + σ̄2

1,m − 2E
[
w (X) w̄1,m (X)

]
. (61)

Subtracting Equation (60) from Equation (61) yields

ē1,m − ẽ1,m = σ̄2
1,m − 2E

[
w (X) w̄1,m (X)

]
+ σ̃2

1,m

=
(
2α1,m − α

2
1,m

)
σ̃2

1,m +
(
1 − α1,m

)2 σ̂2
1,m + σ̃2

1,m

−2E
[
w (X)

{
α1,mw̃1,m (X) +

(
1 − α1,m

)
ŵ1,m (X)

}]
= 2

(
1 − α1,m

) (
σ̃2

1,m − E
[
w (X) ŵ1,m (X)

])
+

(
1 − α1,m

)2
(
σ̂2

1,m − σ̃
2
1,m

)
= −

(
1 − α1,m

)2
(
σ̂2

1,m − σ̃
2
1,m

)
≤ 0, (62)

following Lemma 1, where the second equality uses Equations
(53) and (52) and the last equality uses Equation (47).

Similarly, from Equation (58),

ê1,m = σ2 + σ̂2
1,m − 2E

[
w (X) ŵ1,m (X)

]
. (63)

Subtracting Equation (63) from Equation (61) yields

ē1,m − ê1,m = σ̄2
1,m − 2E

[
w (X) w̄1,m (X)

]
− σ̂2

1,m

+2E
[
w (X) ŵ1,m (X)

]
=

(
2α1,m − α

2
1,m

)
σ̃2

1,m +
(
1 − α1,m

)2 σ̂2
1,m

−2E
[
w (X)

{
α1,mw̃1,m (X) +

(
1 − α1,m

)
ŵ1,m (X)

}]
−σ̂2

1,m + 2E
[
w (X) ŵ1,m (X)

]
= σ̃2

1,m − σ̂
2
1,m − 2α1,m

(
σ̃2

1,m − E
[
w (X) ŵ1,m (X)

])
+

(
1 − α1,m

)2
(
σ̂2

1,m − σ̃
2
1,m

)
= −α2

1,m

(
σ̂2

1,m − σ̃
2
1,m

)
≤ 0, (64)

7



following Lemma 1, where, again, the second equality uses
Equations (53) and (52) and the last equality uses Equation
(47).

The significance of Theorem 3 lies in providing analytical re-
lations comparing the errors committed in calculating the vari-
ances by the univariate additive PDD, factorized PDD, and hy-
brid PDD approximations. It is clear from Theorem 3 that the
error committed by univariate hybrid PDD can never be greater
than the error committed by either univariate additive PDD or
univariate factorized PDD.

5. Expansion Coefficients

The determination of the expansion coefficients, y∅ and Cuj|u|
in Equations (2) and (8), respectively, involves various N-
dimensional integrals over RN . For large N, a full numerical in-
tegration employing an N-dimensional tensor product of a uni-
variate quadrature formula is computationally prohibitive. In-
stead, a dimension-reduction Gaussian-integration scheme and
a sampling technique were applied to estimate the coefficients
efficiently.

5.1. Dimension-Reduction Integration
The dimension-reduction integration, developed by Xu and

Rahman [20], entails approximating a high-dimensional inte-
gral of interest by a finite sum of lower-dimensional integra-
tions. For calculating the expansion coefficients y∅ and Cuj|u| ,
this is accomplished by replacing the N-variate function y in
Equations (2) and (8) with an R-variate RDD approximation at
a chosen reference point, where R ≤ N [10, 21]. The result is
a reduced integration scheme, requiring evaluations of at most
R-dimensional integrals.

Let c = (c1, · · · , cN) ∈ RN be a reference point of X and
y(xv, c−v) represent a |v|-variate component function of y(x), v ⊆
{1, · · · ,N}. Replacing y(x) with an R-variate truncation of its
referential dimensional decomposition [10, 21], the coefficients
y∅ and Cuj|u| are estimated from [20]

y∅ �
R∑

k=0

(−1)k
(
N − R + k − 1

k

) ∑
v⊆{1,··· ,N}
|v|=R−k

∫
R|v|

y(xv, c−v) fXv (xv)dxv

(65)

and

Cuj|u| �
R∑

k=0

(−1)k
(
N − R + k − 1

k

)
×

∑
v⊆{1,··· ,N}
|v|=R−k,u⊆v

∫
R|v|

y(xv, c−v)ψuj|u| (xu) fXv (xv)dxv, (66)

respectively, requiring evaluation of at most R-dimensional in-
tegrals. The reduced integration facilitates calculation of the co-
efficients approaching their exact values as R → N, and is sig-
nificantly more efficient than performing one N-dimensional in-
tegration, particularly when R � N. Hence, the computational

effort is significantly decreased using the dimension-reduction
integration. For instance, when R = 1 or 2, Equations (65) and
(66) involve one-, or at most, two-dimensional integrations, re-
spectively.

For a general function y, numerical integrations are still re-
quired for performing various |v|-dimensional integrals over
R|v|, 0 ≤ |v| ≤ R, in Equations (65) and (66). When R > 1, mul-
tivariate numerical integrations are conducted by constructing
a tensor product of underlying univariate quadrature rules. For
a given v ⊆ {1, · · · ,N}, 1 < |v| ≤ R, let v = {i1, · · · i|v|}, where
1 ≤ i1 < · · · < i|v| ≤ N. Denote by {x(1)

ip
, · · · , x(n)

ip
} ⊂ R a set of

integration points of xip and by {w(1)
ip
, · · · ,w(n)

ip
} the associated

weights generated from a chosen univariate quadrature rule and
a positive integer n ∈ N. Denote by P(n) = ×

p=|v|
p=1 {x

(1)
ip
, · · · , x(n)

ip
}

a rectangular grid consisting of all integration points generated
by the variables indexed by the elements of v. Then the co-
efficients using dimension-reduction integration and numerical
quadrature are approximated by

y∅ �
R∑

i=0

(−1)i
(
N − R + i − 1

i

) ∑
v⊆{1,··· ,N}
|v|=R−i

∑
k|v|∈P(n)

w(k|v|)y(x(k|v|)
v , c−v)

(67)

and

Cuj|u| �
R∑

i=0

(−1)i
(
N − R + i − 1

i

)
×

∑
v⊆{1,··· ,N}
|v|=R−i,u⊆v

∑
k|v|∈P(n)

w(k|v|)y(x(k|v|)
v , c−v)ψuj|u| (x

(k|u|)
u ), (68)

where x(k|v|)
v = {x(k1)

i1
, · · · , x(k|v|)

i|v|
} and w(k|v|) =

∏p=|v|
p=1 w(kp)

ip
is

the product of integration weights generated by the variables
indexed by the elements of v. For independent coordinates
of X, as assumed here, a univariate Gauss quadrature rule is
commonly used, where the integration points and associated
weights depend on the probability distribution of Xi. They are
readily available, for example, the Gauss-Hermite or Gauss-
Legendre quadrature rule, when Xi follows Gaussian or uni-
form distribution. An n-point Gauss quadrature rule exactly
integrates a polynomial with a total degree of at most 2n − 1.

The S -variate, mth-order PDD approximation requires eval-
uations of

∑k=S
k=0

(
N
k

)
mk expansion coefficients, including y∅(d).

If these coefficients are estimated by dimension-reduction in-
tegration with R = S < N and, therefore, involve at most an
S -dimensional tensor product of an n-point univariate quadra-
ture rule depending on m, then the total cost for the S -variate,
mth-order approximation entails a maximum of

∑k=S
k=0

(
N
k

)
nk(m)

function evaluations. If the integration points include a com-
mon point in each coordinate − a special case of symmetric
input probability density functions and odd values of n − the
number of function evaluations reduces to

∑k=S
k=0

(
N
k

)
(n(m) − 1)k.

Nonetheless, the computational complexity of the S -variate
PDD approximation is an S th-order polynomial with respect
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to the number of random variables or integration points. There-
fore, PDD with dimension-reduction integration of the expan-
sion coefficients alleviates the curse of dimensionality to an ex-
tent determined by S .

5.2. Quasi Monte Carlo Simulation

Employing the quasi MCS method for the estimation of the
PDD expansion coefficients, which are high-dimensional inte-
grals defined in Equations (2) and (8), again comprises three
simple steps: (1) generate a low-discrepancy point set PL :=
{u(k) ∈ [0, 1]N , k = 1, · · · , L} of size L ∈ N; (2) map each
sample from PL to the sample x(k) ∈ RN following the proba-
bility measure of the random input X; and (3) approximate the
coefficients by

y∅ �
1
L

L∑
k=1

y
(
x(k)

)
, (69)

Cuj|u| �
1
L

L∑
k=1

y
(
x(k)

)
ψuj|u|

(
x(k)

u

)
. (70)

6. Numerical Examples

Two numerical examples are presented to illustrate the hy-
brid PDD method developed in calculating the second-moment
statistics and tail probability distributions of random mathemat-
ical functions and random eigensolutions of a simple stochastic
dynamical system. Classical Legendre polynomials were used
to define the orthonormal polynomials in Example 1, and all
PDD expansion coefficients and the hybrid model parameter
were determined analytically. In Example 2 all original ran-
dom variables were transformed into standard Gaussian random
variables, facilitating the use of classical Hermite orthonormal
polynomials as bases. The expansion coefficients in Example 2
were calculated using dimension-reduction integration (R = 1)
involving the five-point univariate Gauss-Hermite quadrature
rule. The hybrid model parameter was estimated by quasi MCS
using Sobol’s low-discrepancy sequence of 100 and 500 points
and Equation (54). The sample size for the embedded MCS in
Example 2 is 106.

6.1. Polynomial function

Consider the polynomial function

y (X) =

 2
N

N∑
i=1

Xi

q

,

where N = 5, Xi, i = 1, . . . ,N, are independent and identical
random variables, each following the standard uniform distri-
bution over [0, 1], and q ∈ N is an exponent. The function y (X)
has a purely additive structure when q = 1, but as the value of
q increases, the function y (X) evolves from strongly additive
to strongly multiplicative. The objective of this example is to
compare univariate additive PDD, univariate factorized PDD,

and univariate hybrid PDD approximations in calculating the
variance of y (X) for q = 2, 3, 4, 5, 6, 7, 8.

Since y is a multivariate polynomial of degree q, the trun-
cation parameter m for a PDD approximation, whether addi-
tive, factorized, or hybrid, was set equal to q. Figure 1 shows
how the hybrid model parameter α1,m varies with respect to q,
where σ̃2

1,m, σ̂2
1,m, and the expectation in Equation (46) of α1,m

are calculated exactly. The parameter α1,m is relatively close to
one when q = 2, and decreases monotonically as q increases,
indicating the diminishing additive structure of the function y.
When q = 8, α1,m is relatively close to zero, that is, y is domi-
nantly multiplicative.

1 2 3 4 5 6 7 8 9
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

q

α 1,
m

Figure 1: Variation of α1,m with respect to q (Example 1).

Figure 2 presents the relative errors, defined as the ratio of
the absolute difference between the exact and approximate vari-
ances of y (X) to the exact variance, committed by the uni-
variate additive PDD, univariate factorized PDD, and univari-
ate hybrid PDD methods. The second-moment properties of
y (X), given q, were calculated exactly. The function y (X) is
strongly additive when q = 2 or 3; therefore, the univariate ad-
ditive PDD approximation has lower error than the factorized
PDD approximation. But the trend reverses for 4 ≤ q ≤ 8,
the range of higher values examined. This is because the func-
tion switches from dominantly additive (q ≤ 3) to dominantly
multiplicative (q > 3) as q increases. Nonetheless, for all the
values of q considered, the univariate hybrid PDD approxima-
tion commits lower errors than either univariate additive PDD
or univariate factorized PDD approximation. These results are
consistent with the findings of Theorem 3.

6.2. Three-degree-of-freedom, undamped, spring-mass system
Consider a three-degree-of-freedom, undamped, spring-mass

system, shown in Figure 3, with random mass and random stiff-
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Figure 2: Error in variance calculation from additive PDD, factorized PDD, and
hybrid PDD approximations (Example 1).

ness matrices

M (X) =

 M1 (X) 0 0
0 M2 (X) 0
0 0 M3 (X)

 (71)

and

K (X) =

 K11 (X) K12 (X) K13 (X)
K22 (X) K23 (X)

(sym.) K33 (X)

 , (72)

respectively, where K11 (X) = K1 (X) + K4 (X) + K6 (X),
K12 (X) = −K4 (X), K13 (X) = −K6 (X), K22 (X) = K4 (X) +

K5 (X) + K2 (X), K23 (X) = −K5 (X), and K33 (X) = K5 (X) +

K3 (X) + K6 (X); the masses Mi (X) = µiXi; i = 1, 2, 3 with
µi = 1.0 kg; i = 1, 2, 3, and spring stiffnesses Ki (X) = µi+3Xi+3;
i = 1, · · · , 6 with µi+3 = 1.0 N/m; i = 1, · · · , 5 and µ9 = 3.0
N/m. The input X = {X1, · · · , X9}

T ∈ R9 is an independent log-
normal random vector with mean µX = 1 ∈ R9 and covariance
matrix ΣX = ν2I ∈ R9×9 with coefficient of variation ν = 0.3.

The primary objective of this example is to demonstrate
the high accuracy of univariate hybrid PDD approximation in
calculating the cumulative distribution functions of the three
eigenvalues of the three-degree-of-freedom system. The sec-
ondary, although significant, objective of this example is to
show that the quasi MCS method, with a relatively small sam-
ple size for calculating the model parameter of univariate hybrid
PDD approximation, is capable of delivering results compara-
ble to those obtained from the expensive bivariate additive PDD
approximation.

The probability distributions of three eigenvalues of the
three-degree-of-freedom system were calculated using the

� M1 M3 

K3 

K6 

K1 

M2 

K5 K4 

K2 

Figure 3: A three-degree-of-freedom, undamped, spring-mass system (Exam-
ple 2).

benchmark solution of 106 crude MCS method, and five dif-
ferent fourth-order (m = 4) PDD methods: (1) univariate addi-
tive PDD, (2) bivariate additive PDD, (3) univariate factorized
PDD, (4) univariate hybrid PDD with α1,4 estimated using 100
quasi MCS samples, and (5) univariate hybrid PDD with α1,4
estimated using 500 quasi MCS samples. Figure 4 presents the
marginal probability distributions Fi(λi) := P[Λi ≤ λi] of three
eigenvalues λi, i = 1, 2, 3, where all the PDD solutions were ob-
tained from the embedded MCS; the parenthetical values reflect
the total number of function evaluations required by the respec-
tive methods. The plots are made over a semi-logarithmic scale
to delineate the distributions in the tail regions. For all three
eigenvalues, the probability distributions obtained from the uni-
variate additive PDD method is far from the crude MCS results,
divulging the clear inadequacy of the univariate additive PDD
approximation in calculating tail probabilities. The univariate
factorized PDD method performs relatively better than its addi-
tive counterpart, indicating the dominantly multiplicative struc-
ture of the functions; however, it still leaves much room for im-
provement compared with the benchmark crude MCS results.
The univariate hybrid PDD method requires additional compu-
tational effort owing to quasi MCS for estimating α1,4 in Equa-
tion (54), but the improved results obtained clearly justify the
additional cost. To put the results of the univariate hybrid PDD
method in perspective, the results from the bivariate (S = 2) ad-
ditive PDD method, also obtained, show dramatic improvement
over the univariate additive PDD method, as expected. How-
ever, the bivariate additive PDD method also leads to a signifi-
cantly larger number of function evaluations compared with the
univariate hybrid PDD with quasi MCS (100 samples). There-
fore, a hybrid PDD approximation is desirable, where only uni-
variate truncations are feasible, but not necessarily rendering
adequate accuracy in stochastic solutions by either additive or
factorized PDD approximation alone.

7. Application: A Pickup Truck

This section illustrates the effectiveness of the proposed hy-
brid PDD method in solving a large-scale practical engineering
problem. The application involves predicting the probabilis-
tic characteristics of sound pressure levels inside the cabin of
a pickup truck. The acoustics, measured through sound pres-
sure levels, inside a vehicle are widely considered a prominent
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Figure 4: Tail probabilities of three eigenvalues of the three-degree-of-freedom, undamped, spring-mass system by various PDD approximations and crude MCS

parameter revealing the overall quality and build of the vehi-
cle. A coupled acoustic-structural analysis is therefore critically
important in the automotive industry as it paves the way to-
wards designing vehicles for ride comfort and quietness. Figure
5(a) presents a computer-aided design (CAD) cabin-air-chassis
model of a pickup truck [22]. A finite-element analysis (FEA)
mesh of the model, comprising 43,663 structural elements used
to model the cabin and the chassis and 12,171 acoustic elements
used to model the air interior, with a total of 207,994 degrees
of freedom, is displayed in Figure 5(b). Figure 6(a) depicts the
cabin model without air mesh and doors to show the space oc-
cupied by the air mesh, and Figure 6(b) displays the air mesh
that fills the cabin interior. A tie constraint was employed to
connect the air mesh to the structural parts inside the cabin sur-
face or onto the seat surface.

Portrayed in Figure 5(a), the CAD model contains 24 distinct
materials, with 22 structural materials and two non-structural
materials representing the air inside the cabin and the carpet
on the cabin floor. Twenty-one of the structural materials were
modeled as shell elements, and the remaining material as beam
elements defining the circular beam used for headrest mount-
ing. The Young’s moduli of 22 structural materials are random
variables. The mass densities of the 21 materials modeled as
shell elements are also random variables. Apart from the struc-

tural material properties, the bulk modulus and mass density of
the air inside the cabin are also random variables. Finally, the
proportionality factor between the pressure and velocity of the
carpet surface in the normal direction is also a random variable.
This proportionality constant defines the acoustic admittance of
the carpet surface on the cabin floor. In aggregate, there exist
46 random variables Xi = 1, . . . , 46, as follows: X1 to X22 =

Young’s moduli of materials 1 to 22; X23 to X43 = mass densi-
ties of materials 1 to 21; X44 = bulk modulus of air inside the
cabin; X45 = mass density of air inside the cabin; and X46 =

acoustic admittance of the carpet surface on the cabin floor. All
46 random variables are independent and uniformly distributed
with the coefficient of variation equal to 0.2. Table 1 presents
the material and part names, and the means of random vari-
ables corresponding to the 22 structural materials, µi := E [Xi],
i = 1, . . . , 43. The means of the bulk modulus and mass density
of air inside the cabin are µ44 = 0.139 GPa and µ45 = 1.2×10−12

kg/mm3. The mean of the acoustic admittance of the carpet
surface on the cabin floor is µ46 = 0.5 × 106 mm2s/kg. All
structural materials, except materials 8, 9, and 10, have a de-
terministic Rayleigh stiffness proportional damping defined by
the parameter βR = 0.4 × 10−6 s. For a given value of βR, the
damping fraction ξi for a mode i with natural frequency ωi is
given by the formula ξi = βRωi/2. The value of βR chosen in
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Figure 5: Cabin-air-chassis model of pickup truck: (a) a CAD model, (b) an FEA mesh

Figure 6: Cabin of pickup truck and air mesh. (a) cabin model of pickup truck
with doors removed for clearer illustration; (b) the air mesh inside the cabin

this model is to give approximately 1 percent critical damping
for the modes whose natural frequencies are in the middle of
the range of excitation, i.e., at about 80 Hz at mean input. The
Poisson’s ratios of all structural materials are deterministic and
are equal to 0.3. The probability distributions of input random
variables in this problem were chosen arbitrarily, as the main
purpose was to demonstrate the ability of the proposed method
in solving large-scale practical engineering problems. Identi-
fying more realistic probability distributions for each material
will require additional studies that are beyond the scope of this
work.

7.1. Coupled acoustic-structural analysis

A mode-based coupled acoustic-structural analysis consists
of two steps: an eigensolution extraction followed by a steady-
state dynamic analysis involving sound pressure level calcula-
tions. For obtaining eigensolutions, the first 200 eigenfrequen-
cies were extracted. The Lanczos method [23] embedded in
Abaqus (Version 6.12) [22] was employed for extracting natural
frequencies and mode shapes. For steady-state dynamic anal-
ysis, the airborne load originating from engine vibration was
modeled as a diffuse field incident wave loading on the bulk-
head below the dashboard. In the steady-state dynamic analy-
sis, the sound pressure level at a location in the vicinity of the
driver’s ear was calculated. The location of the driver’s ear was
defined through a node in the air mesh inside the cabin, in ac-
cordance with the specifications of location for measurement
of noise inside motor vehicles defined in International Standard
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Table 1: Material, part name, and mean values of the random input variables for structural materials in pickup truck

Material Material name Young’s modulus Mass density Part name
GPa kg/m3

1 Steel 210 7890 Rail (chassis), bed, cabin, fenders, engine oil box.

2 Steel 210 7890
Wheel housings, rear rim, steering support, battery
tray, seat track.

3 Steel 210 7890
Radiator mounting, radiator outer, fan center, fuel
tank.

4 Steel 210 7890
Engine mountings, fender mountings, hood, doors,
cabin hinges.

5 Plastic 2.8 1200 Fan cover.
6 Glass 76 2500 Windows, windshield.
7 Plastic 3.4 1100 Radiator side block.

8 Steel 210 7890
Rear axle, drive shaft, steering, steering column,
gearbox CV joint, brakes.

9 Steel 210 20900 Brake assembly.
10 Steel 210 6910 Brake assembly.
11 Rubber 250 8060 Tires.

12 Steel 210 7890
A-arm mountings, A-arm-rim connectors, A-arm-rail
connectors, front rim, bed-rail connector, rail
connector.

13 Foam 2.0 253 Seat bottom.
14 Foam 2.0 755 Seat top.
15 Foam 2.0 169 Seat headrest.
16 Steel 210 2500 Door lock.
17 Steel 200 7800 Radiator.

18
Rubber-Metal

Composite 210 1960 Battery.

19 Steel 120 3890 Engine gearbox.
20 Steel 21 1820 Engine front.

21 Steel 210 7890
Headrest connector beams, fan, door lock beams, oil
pan beams, dashboard support.

22 Steel 210 -(a) Radiator mounting beams.
(a) Not required.

ISO-5128 [24]. The values of the sound pressure level were cal-
culated at 200 evenly spaced points in the excitation frequency
range of 35 Hz to 120 Hz. This frequency range corresponds to
engine-induced vibrations in the range of 2100-7200 rpm. The
governing equations of a coupled acoustic-structural analysis
are described in Appendix A.

Due to the uncertainty in material properties, the eigensolu-
tions and sound pressure level values are random functions. The
univariate, second-order hybrid PDD approximation was em-
ployed to determine their second-moment characteristics and
various response probabilities. The associated expansion coef-
ficients of PDD and the hybrid model parameter were estimated
by the quasi MCS method with 500 samples. The sample size
for the embedded MCS of the PDD approximation is 5000.

7.2. Moments of mode shapes

The univariate, second-order hybrid PDD method was em-
ployed to calculate the second-moment statistics of each nodal
pressure component of an eigenvector describing the associ-
ated mode shape of the air inside the cabin. All input random

variables were transformed into uniform random variables, per-
mitting the use of Legendre orthonormal polynomials as basis
functions. The second-moment statistics were calculated from
Equations (69) and (53), where the hybrid model parameter was
estimated from Equation (55). Based on these statistics, the
L2-norms (square root of sum of squares) of the mean and vari-
ance of a nodal pressure were calculated. Figures 7(a) and (b)
present contour plots of the L2-norms of the mean and vari-
ances, respectively, of an arbitrarily selected 35th mode shape,
calculated using hybrid PDD approximation. Similar results
can be generated for other mode shapes if desired.

7.3. Probabilistic characteristics of sound pressure level
The sound pressure level in decibels (dB) is calculated in the

vicinity of the driver’s ear as SPL = 20 log10

[
p/

(
pre f
√

2
)]

,
where p is the pressure in Pa obtained in mode-based steady-
dynamic analysis, and pre f = 2 × 10−5 Pa is the zero or refer-
ence sound pressure, which is considered the threshold of hu-
man hearing.

Figure 8 shows various percentiles of sound pressure level
in the vicinity of the driver’s ear calculated from the univari-
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Figure 7: Contour plots of the L2-norms of 35th mode shape of air inside the
cabin of a pickup truck by the hybrid PDD approximation: (a) mean, (b) vari-
ance

ate, second-order hybrid PDD approximation. The percentiles
were calculated from 5000 embedded MCS of the hybrid PDD
approximation at 200 evenly spaced points in the excitation fre-
quency range of 35 Hz to 120 Hz. Figure 9 presents the proba-
bility density function of the maximum sound pressure level in
the excitation frequency range of 35 Hz to 120 Hz, as calculated
from 5000 embedded MCS of the hybrid PDD approximation.
These results provide vital information pertaining to the acous-
tic performance of the vehicle operating under several random
input parameters. A designer can utilize these valuable results
for optimizing the vehicle design to achieve a desired acoustic
performance.

Figure 8: Percentiles of sound pressure levels in the vicinity of the driver’s ear
in a pickup truck by the hybrid PDD approximation

8. Conclusion

A new hybrid PDD method was developed for uncertainty
quantification of high-dimensional complex systems. The
method is built from a linear combination of an additive
and a multiplicative PDD approximation, both obtained from
lower-dimensional ANOVA component functions of a general,
square-integrable multivariate function. When a stochastic re-
sponse is not endowed with a specific dimensional hierarchy,
the hybrid PDD approximation, optimally blending the addi-
tive PDD and multiplicative PDD approximations, is the best
choice. A theorem and a corollary proven herein give analyt-
ical expressions for the model parameters that form the linear
combinations of additive PDD and multiplicative PDD approx-
imations, resulting in the hybrid PDD method. Using properties
of orthonormal polynomials, explicit formulae were derived for
calculating the response statistics by the univariate hybrid PDD
approximation.

The univariate truncation of the hybrid PDD was employed
to calculate the second-moment properties and tail probability
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Figure 9: Probability density function of the maximum sound pressure level in
excitation frequency range of 35 Hz to 120 Hz by the hybrid PDD approxima-
tion

distribution in two numerical problems, where the output func-
tions are either simple mathematical functions or eigenvalues
of a simple linear oscillator. For a function with a mixed addi-
tive and multiplicative structure, the univariate hybrid PDD ap-
proximation commits remarkably lower errors in calculating the
variance compared with both univariate additive and multiplica-
tive PDD approximations. The univariate hybrid PDD approxi-
mation is also more accurate than either the univariate additive
or multiplicative PDD methods, and is more efficient than the
bivariate additive PDD method in determining the tail proba-
bilistic characteristics of eigenvalues of the dynamic system ex-
amined. Therefore, the univariate truncation of the hybrid PDD
is ideally suited to solving stochastic problems that may other-
wise mandate expensive bivariate or higher-variate additive or
multiplicative PDD approximations. Finally, a successful eval-
uation of random eigensolutions of a pickup truck, subjected to
46 input random variables, involving coupled acoustic-structure
analysis demonstrates the ability of the new method in solving
large-scale practical engineering problems.

Appendix A. Governing Equations for Coupled Acoustic-
Structural Analysis

A coupled acoustic-structural analysis involves solution of
the acoustic variational equation∫

V f

[
δp

(
1

K f
p̈ +

γ

ρ f K f
ṗ
)

+
1
ρ f

∂δp
∂x
·
∂p
∂x

]
dV −

∫
S f t

δpT0dS

+

∫
S f r

δp
(
γ

ρ f c1
p +

(
γ

ρ f k1
+

1
c1

)
ṗ +

1
k1

p̈
)

dS

+

∫
S f i

δp
(

1
c1

ṗ +
1
a1

p
)

dS −
∫

S f s

δpn− · ümdS

+

∫
S f rs

δp
(
γ

ρ f c1
p +

(
γ

ρ f k1
+

1
c1

)
ṗ +

1
k1

p̈ − n− · üm
)

dS

= 0, (A.1)

and the structural virtual work equation∫
V
δε : σdV +

∫
V
αcρδum · u̇mdV +

∫
V
ρδum · ümdV

+

∫
S f s

pδum · ndS −
∫

S t

δum · tdS = 0 (A.2)

simultaneously for the structural displacement um and the
acoustic “displacement” or pressure p. In Equations (A.1) and
(A.2), K f is the bulk modulus of the fluid acoustic medium of
volume V f ; γ is the volumetric drag, or force per unit volume
per velocity, in the fluid; ρ f is the mass density of the fluid;
δp is the pressure variation in the fluid; x is spatial position of
the fluid particle; T0 is the prescribed boundary traction over
S f t, the acoustic boundary subregion where the normal deriva-
tive of the acoustic medium is prescribed; 1/c1 and 1/k1 are the
proportionality coefficients between the pressure and velocity,
and the pressure and displacement, respectively, normal to the
surface of the fluid; S f r is the reactive acoustic boundary sub-
region; S f i is the radiating acoustic boundary subregion; S f rs is
the acoustic boundary subregions where the displacements are
linearly coupled but not necessarily identically equal due to the
presence of a compliant or reactive intervening layer; n− is the
outward normal to the structure; σ is the stress at a point on
the structure; δε is the strain variation in the structure; αc is the
mass proportional damping factor; ρ is the mass density of the
structure; and t is the surface traction applied over the surface
S t of the structure. Further details are available elsewhere [25].
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