
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING
Int. J. Numer. Meth. Engng 2013; 94:221–247
Published online 6 March 2013 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/nme.4437

Uncertainty quantification of high-dimensional complex systems
by multiplicative polynomial dimensional decompositions
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SUMMARY

The central theme of this paper is multiplicative polynomial dimensional decomposition (PDD) methods
for solving high-dimensional stochastic problems. When a stochastic response is dominantly of multi-
plicative nature, the standard PDD approximation, predicated on additive function decomposition, may
not provide sufficiently accurate probabilistic solutions of a complex system. To circumvent this problem,
two multiplicative versions of PDD, referred to as factorized PDD and logarithmic PDD, were devel-
oped. Both versions involve a hierarchical, multiplicative decomposition of a multivariate function, a broad
range of orthonormal polynomial bases for Fourier-polynomial expansions of component functions, and a
dimension-reduction or sampling technique for estimating the expansion coefficients. Three numerical prob-
lems involving mathematical functions or uncertain dynamic systems were solved to corroborate how and
when a multiplicative PDD is more efficient or accurate than the additive PDD. The results show that indeed,
both the factorized and logarithmic PDD approximations can effectively exploit the hidden multiplicative
structure of a stochastic response when it exists. Since a multiplicative PDD recycles the same component
functions of the additive PDD, no additional cost is incurred. Finally, the random eigensolutions of a sport
utility vehicle comprising 40 random variables were evaluated, demonstrating the ability of the new methods
to solve industrial-scale problems. Copyright © 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Stochastic computing of high-dimensional functions, often defined algorithmically via numerical
solution of algebraic, differential, or integral equations, is a vastly expensive and daunting initiative.
The fundamental impediment to practical computability is frequently related to the high dimension
of the multivariate integration or interpolation problem, known as the curse of dimensionality. The
recently invented polynomial dimensional decomposition (PDD) method [1–3] alleviates the curse
of dimensionality [4] to some extent by splitting a high-dimensional output function into a finite sum
of simpler component functions that are arranged with respect to the degree of interaction among
input random variables. In addition, the method exploits the smoothness properties of a stochastic
response, whenever possible, by expanding its component functions in terms of measure-consistent
orthogonal polynomials, leading to closed-form expressions of the second-moment characteristics
of a stochastic solution. Although the same polynomials are extant in polynomial chaos expansion,
a recent study found that when the degrees of interaction become progressively weaker or vanish
altogether, the PDD approximation commits smaller error than does the polynomial chaos approxi-
mation for identical expansion orders [5].
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222 V. YADAV AND S. RAHMAN

Since PDD stems from the well-known analysis-of-variance (ANOVA) dimensional decomposi-
tion [6–12], it is predicated on the additive nature of a function decomposition. This is pertinent
as long as the dimensional hierarchy of a stochastic response of interest is also additive. In which
case, a truncation of existing PDD, referred to as the additive PDD (A-PDD) in this paper, pre-
serving at most S -variate component functions generates concomitant stochastic solutions with
S th-order polynomial computational complexity. The higher the value of S , the higher the accuracy,
but also the computational cost. Based on past work, at least a bivariate A-PDD approximation,
that is, selecting SD2, is essential for rendering acceptable accuracy in stochastic solutions, with
the computational cost varying quadratically with respect to the number of variables [1, 2, 5].
However, the dimensional hierarchy of a stochastic response, in general, is not known a priori.
Therefore, indiscriminately using A-PDD for general stochastic analysis is not desirable. When a
response is dominantly of multiplicative nature, the A-PDD approximation for a chosen trunca-
tion parameter S may not predict sufficiently accurate probabilistic characteristics of a complex
system. Therefore, alternative decompositions suitable for multiplicative-type response functions
and measure-consistent orthogonal polynomials should be explored. For such a decomposition, it is
unknown which truncation parameter S should be selected when compared with that for the addi-
tive decomposition. Is it possible to solve a stochastic problem by selecting a smaller value of S for
the alternative decomposition than for the additive decomposition? In particular, will a univariate
PDD method, that is, selecting SD1 in the alternative decomposition, provide acceptable accuracy
in stochastic solutions, incurring only a linear computational complexity? If yes, then a significant,
positive impact on uncertainty quantification of high-dimensional complex systems is anticipated.
Further complications may arise when a complex system exhibits a response that is dominantly
neither additive nor multiplicative. In the latter case, a mixed approach coupling both additive and
multiplicative decompositions, preferably optimally, may be needed. These enhancements, some of
which are indispensable, should be pursued without sustaining significant additional cost.

This paper presents two new multiplicative variants of the PDD approximation, referred to as
factorized PDD (F-PDD) and logarithmic PDD (L-PDD) approximations, for solving high-
dimensional stochastic problems commonly encountered in engineering and applied sciences. The
methods are based on (1) hierarchical, multiplicative decompositions of a high-dimensional function
in terms of lower-variate component functions, (2) Fourier-polynomial expansions of lower-variate
component functions by measure-consistent orthonormal polynomial bases, and (3) dimension-
reduction integration or sampling techniques for estimating the expansion coefficients. Section 2
formally defines a general stochastic problem, followed by the ANOVA dimensional decomposition
of a multivariate function. Section 3 briefly explains how ANOVA leads up to A-PDD approxima-
tion, an existing stochastic method. A multiplicative dimensional decomposition, including a proof
of existence and uniqueness, is presented in Section 4. In addition, the section reveals the relation-
ship or similarity among A-PDD, F-PDD, and L-PDD, establishing how the latter two methods can
exploit a hidden multiplicative structure, if it exists, of a stochastic response. The calculation of the
expansion coefficients by dimension-reduction integration and sampling techniques is described in
Section 5. Section 6 presents three numerical examples involving mathematical functions or random
eigenvalue problems, contrasting the accuracy, convergence properties, and computational efforts of
the proposed and existing methods. A large-scale stochastic-dynamics problem, solved using the
new PDD methods, is reported in Section 7. Finally, conclusions are drawn in Section 8.

2. ANOVA DIMENSIONAL DECOMPOSITION

Let N, N0, R, and RC0 represent the sets of positive integer (natural), nonnegative integer, real,
and nonnegative real numbers, respectively. For k 2N, denote by Rk the k-dimensional Euclidean
space, by Nk

0 the k-dimensional multi-index space, and by Rk�k the set of k�k real-valued matrices.
These standard notations will be used throughout the paper.

Let .�,F ,P / be a complete probability space, where � is a sample space, F is a � -field
on �, and P W F ! Œ0, 1� is a probability measure. With BN representing the Borel � -field on
RN , N 2 N, consider an RN -valued random vector X WD .X1, : : : ,XN / W .�,F/! .RN ,BN /,
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which describes the statistical uncertainties in all system and input parameters of a high-dimensional
stochastic problem. The probability law of X is completely defined by its joint probability den-
sity function fX WRN!RC0 . Assuming independent coordinates of X, its joint probability density
fX.x/ D …iDN

iD1 fi .xi / is expressed by a product of marginal probability density functions fi of
Xi , i D 1, : : : ,N , defined on the probability triple .�i ,Fi ,Pi / with a bounded or an unbounded

support on R. For a given u � ¹1, : : : ,N º, fX�u.x�u/ WD
QN
iD1,i…u fi .xi / defines the marginal

density function of X�u WD X¹1,:::,N ºnu.
Let y.X/ WD y.X1, : : : ,XN ), a real-valued, measurable transformation on .�,F/, define a high-

dimensional stochastic response of interest and L2.�,F ,P / a Hilbert space of square-integrable
functions y with respect to the induced generic measure fX.x/dx supported on RN . The ANOVA
dimensional decomposition, expressed by the recursive form [7, 11, 12]

y.X/D
X

u�¹1,:::,N º

yu.Xu/, (1)

y; D

Z
RN

y.x/fX.x/dx, (2)

yu.Xu/D
Z
RN�juj

y.Xu, x�u/fX�u.x�u/dx�u �
X
v�u

yv.Xv/, (3)

is a finite, hierarchical expansion in terms of its input variables with increasing dimensions,
where u� ¹1, : : : ,N º is a subset with the complementary set �uD ¹1, : : : ,N ºnu and cardinal-
ity 0 6 juj 6 N , and yu is a juj-variate component function describing a constant or the interactive
effect of Xu D .Xi1 , : : : ,Xijuj/, 1 6 i1 < � � � < ijuj 6 N , a subvector of X, on y when juj D 0 or
juj > 0. The summation in Equation (1) comprises 2N terms, with each term depending on a group
of variables indexed by a particular subset of ¹1, : : : ,N º, including the empty set ;. In Equation (3),
.Xu, x�u/ denotes an N -dimensional vector whose i th component is Xi if i 2 u and xi if i … u.
When uD ;, the sum in Equation (3) vanishes, resulting in the expression of the constant function
y; in Equation (2). When uD ¹1, : : : ,N º, the integration in Equation (3) is on the empty set, repro-
ducing Equation (1) and hence finding the last function y¹1,:::,N º. Indeed, all component functions
of y can be obtained by interpreting literally Equation (3). On inversion, Equations (1)–(3) result
in [11, 12]

y.X/D
X

u�¹1,:::,N º

X
v�u

.�1/juj�jvj
Z
RN�jvj

y.Xv , x�v/fX�v .x�v/dx�v , (4)

providing an explicit form of the same decomposition.

Remark 1
The ANOVA component functions yu, u � ¹1, : : : ,N º, are uniquely determined from the
annihilating conditions [7, 11, 12]Z

R
yu.xu/fi .xi /dxi D 0 for i 2 u, (5)

resulting in two remarkable properties: (1) the component functions, yu, ; ¤ u � ¹1, : : : ,N º,
have zero means; and (2) two distinct component functions yu and yv , where u � ¹1, : : : ,N º,
v � ¹1, : : : ,N º, and u¤ v, are orthogonal. Further details are available elsewhere [12].

Remark 2
Traditionally, Equations (1)–(3) or (4) withXj , j D 1, : : : ,N , following independent, standard uni-
form distributions, are identified as the ANOVA decomposition [7,11]; however, recent works reveal
no fundamental requirement for a specific probability measure of X, provided that the resultant
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224 V. YADAV AND S. RAHMAN

integrals in Equations (1)–(3) or (4) exist and are finite [1, 2, 12]. In this work, the ANOVA dimen-
sional decomposition should be interpreted with respect to an arbitrary but product type probability
measure for which it is always endowed with desirable orthogonal properties.

Remark 3
The nonconstant component functions of the classical or standard ANOVA decomposition,
described by Equation (3), are applicable for independent coordinates of X. For statistically depen-
dent variables, a unique ANOVA decomposition also exists, although subject to mild restrictive
conditions. In which case, Equation (3) must be generalized to account for nonproduct type
probability measures. The authors do not pursue it here.

3. ADDITIVE POLYNOMIAL DIMENSIONAL DECOMPOSITION

Let ¹ ij .Xi /I j D 0, 1, : : :º be a set of orthonormal polynomial basis functions in the Hilbert
space L2.�i ,Fi ,Pi / that is consistent with the probability measure Pi of Xi . For a given ; ¤
u D ¹i1, : : : , ijujº � ¹1, : : : ,N º, 1 6 juj 6 N , 1 6 i1 < � � � < ijuj 6 N , denote a product

probability triple by
�
�
pDjuj
pD1 �ip ,�pDjujpD1 Fip ,�pDjujpD1 Pip

�
, and the associated space of square-

integrable juj-variate component functions of y by L2
�
�
pDjuj
pD1 �ip ,�pDjujpD1 Fip ,�pDjujpD1 Pip

�
WD®

yu W
R
Rjuj y

2
u.xu/fXu.xu/dxu <1

¯
, which is a Hilbert space. Since the joint density of

.Xi1 , : : : ,Xijuj/ is separable (independence), that is, fXu.xu/ D
Qjuj
pD1fip

�
xip
�
, the product poly-

nomial  ujjuj.Xu/ WD
Qjuj
pD1  ipjp

�
Xip

�
, where jjuj D .j1, : : : , jjuj/ 2 N juj0 , a juj-dimensional

multi-index with 1-norm
��jjuj

��
1
D max.j1, : : : , jjuj/, constitutes an orthonormal basis in

L2
�
�
pDjuj
pD1 �ip ,�pDjujpD1 Fip ,�pDjujpD1 Pip

�
. Two important properties of these product polynomials

from the tensor product of Hilbert spaces are as follows.

Proposition 4
The product polynomials  ujjuj.Xu/, ; ¤ u � ¹1, : : : ,N º, j1, � � � , jjuj ¤ 0, have zero means,
that is,

E
�
 ujjuj.Xu/

�
D 0. (6)

Proposition 5
Two distinct product polynomials  ujjuj.Xu/ and  vkjvj.Xv/, where ; ¤ u � ¹1, : : : ,N º, ; ¤ v �
¹1, : : : ,N º, j1, � � � , jjuj ¤ 0, k1, � � � , kjvj ¤ 0, are uncorrelated, and each has unit variance, that is,

E
�
 ujjuj.Xu/ vkjvj.Xv/

�
D

²
1 if uD vI jjuj D kjvj,
0 otherwise.

(7)

Proof
The results of Propositions 4 and 5 follow by recognizing independent coordinates of X and using
the second-moment properties of univariate orthonormal polynomials: (1) EŒ ij .Xi /� D 1 when
j D 0 and zero when j > 1; (2) E

�
 ij1.Xi / ij2.Xi /

�
D 1when j1 D j2 and zero when j1 ¤ j2 for

an arbitrary random variable Xi , where E is the expectation operator with respect to the probability
measure fX.x/dx. �

As a result, the orthogonal polynomial expansion of a nonconstant juj-variate component function
becomes [1, 2]

yu.Xu/D
X

jjuj2N
juj
0

j1,:::,jjuj¤0

Cujjuj ujjuj.Xu/, ; ¤ u� ¹1, : : : ,N º, (8)
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with

Cujjuj WD

Z
RN

y.x/ ujjuj.xu/fX.x/dx (9)

representing the corresponding expansion coefficient. For instance, when u D ¹iº, i D 1, : : : ,N ,
the univariate component functions and expansion coefficients are y¹iº.Xi / D

P1
jD1 Cij ij .Xi /

and Cij WD C¹iº.j /, respectively. Using Propositions 4 and 5, all component functions yu, ; ¤
u � ¹1, : : : ,N º, are found to satisfy the annihilating conditions of the ANOVA dimensional
decomposition. The end result of combining Equations (1) and (8) is the additive PDD [1, 2]

y.X/D y;C
X

;¤u�¹1,:::,N º

X
jjuj2N

juj
0

j1 ,:::,jjuj¤0

Cujjuj ujjuj.Xu/, (10)

providing an exact, hierarchical expansion of y in terms of an infinite number of coefficients or
orthonormal polynomials. In practice, the number of coefficients or polynomials must be finite, say,
by retaining at most mth-order polynomials in each variable. Furthermore, in many applications,
the function y can be approximated by a sum of at most S -variate component functions, where
16 S 6N , resulting in the S -variate, mth-order A-PDD approximation

QyS ,m.X/D y;C
X

;¤u�¹1,:::,Nº
16juj6S

X
jjuj2N

juj
0

,kjjujk16m
j1 ,:::,jjuj¤0

Cujjuj ujjuj.Xu/, (11)

containing
PS
kD0

�
N
S�k

�
mS�k number of PDD coefficients and corresponding orthonormal poly-

nomials. Due to its additive structure, the approximation in Equation (11) includes degrees of
interaction among at most S input variables Xi1 , : : : ,XiS , 1 6 i1 6 � � � 6 iS 6 N . For instance,
by selecting S D 1 and 2, the functions Qy1,m and Qy2,m respectively provide univariate and bivariate
mth-order approximations, contain contributions from all input variables, and should not be viewed
as first-order and second-order approximations, nor do they limit the nonlinearity of y. Depending
on how the component functions are constructed, arbitrarily high-order univariate and bivariate
terms of y could be lurking inside Qy1,m and Qy2,m. When S ! N and m ! 1, QyS ,m converges
to y in the mean-square sense, permitting Equation (11) to generate a hierarchical and convergent
sequence of approximations of y.

Applying the expectation operator on QyS ,m.X/ and . QyS ,m.X/ � y;/2 and noting Propositions 4
and 5, the mean [3]

EŒ QyS ,m.X/�D y; (12)

of the S -variate, mth-order PDD approximation matches the exact mean EŒy.X/�, regardless of S
or m, and the approximate variance [3]

E
�
. QyS ,m.X/�EŒ QyS ,m.X/�/2

�
D

X
;¤u�¹1,:::,N º
16juj6S

X
jjuj2N

juj
0

,kjjujk16m
j1 ,:::,jjuj¤0

C 2ujjuj
(13)

is calculated as the sum of squares of the expansion coefficients from the S -variate, mth-order
A-PDD approximation of y.X/. A recent work proved that the approximate variance in
Equation (13) approaches the exact variance of y when S ! N and m ! 1 [3]. The mean-
square convergence of QyS ,m is guaranteed as y, and its component functions are all members of the
associated Hilbert spaces.

For the special case of S D 1, the univariate A-PDD approximation

Qy1,m.X/D y;C
NX
iD1

mX
jD1

Cij ij .Xi / (14)
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226 V. YADAV AND S. RAHMAN

of y.X/ yields the exact mean

EŒ Qy1,m.X/�D y; (15)

and an approximate variance

E
�
. Qy1,m.X/�EŒ Qy1,m.X/�/2

�
D

NX
iD1

mX
jD1

C 2ij (16)

that depends on m<1.

4. PROPOSED MULTIPLICATIVE POLYNOMIAL DIMENSIONAL DECOMPOSITIONS

4.1. Multiplicative function decomposition

Consider a general multiplicative form

y.X/D
Y

u�¹1,:::,N º

Œ1C ´u.Xu/� (17)

of the dimensional decomposition of y, where ´u, u � ¹1, : : : ,N º, are various component func-
tions of input variables with increasing dimensions. Like the sum in Equation (1), the product in
Equation (17) comprises 2N terms, with each term depending on a group of variables indexed by a
particular subset of ¹1, : : : ,N º, including the empty set ;. Tunga and Demiralp [13] originally pro-
posed this decomposition, calling it factorized high-dimensional model representation. However, it
is not obvious if such decomposition exists uniquely for a general multivariate function y. Lemma 6
and Theorem 7 demonstrate that, indeed, it does with some restrictions.

Lemma 6
The ANOVA component functions yv , v � ¹1, : : : ,N º, of a square-integrable function y WRN !R,
when integrated with respect to the probability measure fX�u.x�u/dx�u D

QN
iD1,i…u fi .xi /dxi ,

u� ¹1, : : : ,N º, satisfy

Z
RN�juj

yv.xv/fX�u.x�u/dx�u D
²
yv.xv/ if v � u,
0 if v ª u.

(18)

Proof
For any two subsets v � ¹1, : : : ,N º, u� ¹1, : : : ,N º, .v\�u/��u and �uD .�u n .v\�u//[
.v \�u/. If v � u, then yv.xv/ does not depend on x�u, resulting inZ

RN�juj
yv.xv/fX�u.x�u/dx�u D yv.xv/

Z
RN�juj

fX�u.x�u/dx�u D yv.xv/, (19)

the nontrivial result of Equation (18). When v ª u, consider an integer k 2 .v \�u/, so that k 2 v.
ThenZ

RN�juj
yv.xv/fX�u.x�u/dx�u D

Z
RN�juj�jv\�uj

Z
Rjv\�uj

yv.xv/fX�u.x�u/dxv\�udx�un.v\�u/

D

Z
RN�juj�jv\�uj�1

	Z
R
yv.xv/fk.xk/dxk




�
Y

j2.v\�u/,j¤k

fj .xj /dx.v\�u/n¹kºdx�un.v\�u/

D 0,
(20)

where the equality to zero in the last line follows from using Equation (5). �
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Theorem 7
A square-integrable function y W RN ! R for a given probability measure fX.x/dx D
…iDN
iD1 fi .xi /dxi admits a unique multiplicative dimensional decomposition expressed by

Equation (17).

Proof
Changing the dummy index from u to v, replacing X with x, and integrating both sides of
Equation (1) with respect to the measure fX�u.x�u/dx�u, that is, over all variables except xu, yields

Z
RN�juj

y.x/fX�u.x�u/dx�u D
X

v�¹1,:::,N º

Z
RN�juj

yv.xv/fX�u.x�u/dx�u. (21)

Using Lemma 6, Equation (21) simplifies to

Z
RN�juj

y.x/fX�u.x�u/dx�u D
X
v�u

yv.xv/D yu.xu/C
X
v�u

yv.xv/ (22)

with� representing proper subset (strict inclusion). Therefore, for any u� ¹1, : : : ,N º, including ;,

yu.xu/D
Z
RN�juj

y.x/fX�u.x�u/dx�u �
X
v�u

yv.xv/, (23)

proving the existence and uniqueness of ANOVA component functions for a square-integrable
function. To do the same for the multiplicative component functions, expand the right side of
Equation (17) to form

y.X/D ´;C
X

u�¹1,:::,N º
jujD1

ru.´v.Xv/I v � u/C
X

u�¹1,:::,N º
jujD2

ru.´v.Xv/I v � u/C � � �

C r¹1,:::,N º.´v.Xv/I v � ¹1, : : : ,N º/

D
X

u�¹1,:::,N º

ru.´v.Xv/I v � u/,

(24)

where ru.´v.Xv/I v � u/ is a function of at most juj-variate multiplicative component
functions of y. For instance, when u D ;, u D ¹iº, and u D ¹i1, i2º, i , i1, i2 D
1, : : : ,N , i2 > i1, the corresponding ru-functions are r;.´;/ D ´;, r¹iº.´;, ´¹iº.Xi //, and
r¹i1,i2º.´;, ´¹i1º.Xi1/, ´¹i2º.Xi2/, ´¹i1,i2º.Xi1 ,Xi2//, respectively. Comparing Equations (1) and (24)
yields the recursive relationship,

ru.´v.Xv/I v � u/D yu.Xu/, (25)

which, on inversion, expresses ´u, u� ¹1, : : : N º, in terms of the additive ANOVA component func-
tions yv , v � u. Therefore, given a probability measure of X, the functions ru and ´u, u� ¹1, : : : N º,
also exist and are unique. �

In this work, two new multiplicative PDDs, referred to as factorized PDD and logarithmic
PDD, were developed in the spirit of additive PDD for tackling high-dimensional stochastic
response functions endowed with multiplicative dimensional hierarchies. Both decompositions,
rooted in Equation (17), exploit the smoothness properties of a stochastic solution, if they exist,
by measure-consistent orthogonal polynomials, and are described in the following subsections.
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228 V. YADAV AND S. RAHMAN

4.2. Factorized polynomial dimensional decomposition

The F-PDD is built on two principal steps: (1) finding the explicit relationships between the compo-
nent functions of the ANOVA and the multiplicative dimensional decompositions of a multivariate
function y, and (2) expanding the ANOVA component functions in terms of the measure-consistent
orthonormal polynomial basis functions. Theorem 8 reveals the desired relationships in the first step.

Theorem 8
The recursive relationships between component functions of the ANOVA and multiplicative dimen-
sional decompositions of a square-integrable function y W RN ! R, represented by Equations (1)
and (17), respectively, are

1C ´u.Xu/D

X
v�u

yv.Xv/

Y
v�u

Œ1C ´v.Xv/�
, u� ¹1, : : : ,N º. (26)

Proof
Since Equations (1) and (17) represent the same function y,X

u�¹1,:::,N º

yu.Xu/D
Y

u�¹1,:::,N º

Œ1C ´u.Xu/�, (27)

which, as is, is unwieldy to solve for ´u. However, from Equation (25), the solution ´u for
u � ¹1, : : : ,N º depends only on functions yv such that v � u. Therefore, all remaining additive
or multiplicative component functions not involved can be assigned arbitrary values. In particular,
setting yv D ´v D 0 for all v ª u in Equation (27) results inX

v�u

yv.Xv/D
Y
v�u

Œ1C ´v.Xv/�D Œ1C ´u.Xu/�
Y
v�u

Œ1C ´v.Xv/�, (28)

which, on inversion, yields Equation (26), completing the proof. �

Corollary 9
Recursive evaluations of Equation (26) eliminate 1C ´v , v � u, leading to an explicit form of

1C ´u.Xu/D

X
wjuj�u

ywjuj
�
Xwjuj

�

Y
wjuj�u

X
wjuj�1�wjuj

ywjuj�1
�
Xwjuj�1

�

Y
wjuj�1�wjuj

. . .

. . .
Y

w2�w3

X
w1�w2

yw1.Xw1/

Y
w1�w2

X
w0�w1

yw0.Xw0/

1

(29)

for any u� ¹1, : : : ,N º, solely in terms of the ANOVA component functions.

Corollary 10
The multiplicative constant, univariate, and bivariate component functions of a square-integrable
function y W RN ! R, obtained by setting u D ;, u D ¹iºI i D 1, : : : ,N , and u D ¹i1, i2ºI i1 <
i2 D 1, : : : ,N , respectively, in Equation (26) or (29) are

1C ´; D y;, (30)
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1C ´¹iº.Xi /D
y;C y¹iº.Xi /

y;
, (31)

and

1C ´¹i1,i2º.Xi1 ,Xi2/D
y;C y¹i1º.Xi1/C y¹i2º.Xi2/C y¹i1,i2º.Xi1 ,Xi2/

y;

�
y;C y¹i1º.Xi1/

y;

��
y;C y¹i2º.Xi2/

y;

� . (32)

Remark 11
Equations (30) – (32) can also be obtained employing the identity and first-degree and second-degree
idempotent operators [13]. However, to obtain similar expressions for trivariate and higher-variate
multiplicative component functions, an extensive amount of algebra associated with third-degree
and higher-degree idempotent operators will be required. This is the primary reason why component
functions with three or more variables have yet to be reported in the current literature. Theorem 8, in
contrast, is simpler and, more importantly, provides a general expression – Equation (26) or (29) –
that is valid for a multiplicative component function of an arbitrary number of variables.

The next step entails representing the ANOVA component functions by their Fourier-polynomial
expansions, that is, applying Equation (8) into Equation (26), which results in expressing the
multiplicative component functions

1C ´u.Xu/D

y;C
X
;¤v�u

X
jjvj2N

jvj
0

j1,:::,jjvj¤0

Cvjjvj vjjvj.Xv/

Y
v�u

Œ1C ´v.Xv/�
, u� ¹1, : : : ,N º, (33)

in terms of orthonormal polynomials as well. Finally, combining Equations (17) and (33) creates
the F-PDD of

y.X/D y;
Y

;¤u�¹1,:::,N º

2
66666664

y;C
X
;¤v�u

X
jjvj2N

jvj
0

j1,:::,jjvj¤0

Cvjjvj vjjvj.Xv/

Y
v�u

Œ1C ´v.Xv/�

3
77777775

, (34)

also an exact representation of y.X/, where infinite orthonormal polynomials of increasing dimen-
sions are structured with a multiplicative hierarchy, as opposed to the additive hierarchy in
Equation (10). Consequently, an S -variate, mth-order F-PDD approximation, retaining at most
S -variate component functions and mth-order orthogonal polynomials, becomes

OyS ,m.X/D y;
Y

;¤u�¹1,:::,N º
16juj6S

2
66666664

y;C
X
;¤v�u

X
jjvj2N

jvj
0

,kjjujk16m
j1,:::,jjvj¤0

Cvjjvj vjjvj.Xv/

Y
v�u

Œ1C ´v.Xv/�

3
77777775

. (35)

It is elementary to show that the S -variate, mth-order F-PDD approximation converges to y.X/ in
the mean-square sense when S ! N and m!1. It is worth noting that Equations (33)–(35) can
also be expressed explicitly, solely in terms of orthonormal polynomials exploiting Equation (29).
However, they are not reported here because of their more complicated form.

Although the right side of Equation (35) contains products of at most S univariate polynomi-
als, no simple expressions are available for the second-moment properties of OyS ,m.X/ if S and
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m are selected arbitrarily. However, any probabilistic characteristic of y.X/ is easily estimated by
the Monte Carlo simulation (MCS) of OyS ,m.X/ in Equation (35). When S D 1, the univariate F-PDD
approximation

Oy1,m.X/D y;

2
4 NY
iD1

8<
:1C 1

y;

mX
jD1

Cij ij .Xi /

9=
;
3
5 (36)

forms a product of univariate polynomials, guiding to closed-form expressions of its second-moment
properties. Indeed, it is elementary to show that Equation (36) results in the exact mean

EŒ Oy1,m.X/�D y;, (37)

but an approximate variance

EŒ. Oy1,m.X/�E
�
Oy1,m.X/�/2

�
D y2;

2
4 NY
iD1

0
@1C 1

y2;

mX
jD1

C 2ij

1
A� 1

3
5 (38)

that are valid for an arbitrary m<1.

4.3. Logarithmic polynomial dimensional decomposition

The L-PDD is constructed by invoking the ANOVA dimensional decomposition of the logarith-
mic transformation of a stochastic response, followed by the Fourier-polynomial expansions of
the ANOVA component functions in terms of the measure-consistent orthonormal polynomial
basis functions.

The ANOVA dimensional decomposition of the logarithm of a stochastic response w.X/ WD
lny.X/, if it exists, is

w.X/D
X

u�¹1,:::,N º

wu.Xu/, (39)

w; D

Z
RN

lny.x/fX.x/dx, (40)

wu.Xu/D
Z
RN�juj

lny.Xu, x�u/fX�u.x�u/dx�u �
X
v�u

wv.Xv/, (41)

where wu is a juj-variate component function describing a constant or the interactive effect of Xu
on w when juj D 0 or juj> 0. On exponentiation, Equation (39) reverts to

y.X/D
Y

u�¹1,:::,N º

expŒwu.Xu/�, (42)

an expansion of the original function. Compared with Equation (17), Equation (42) represents
another multiplicative dimensional decomposition when expŒwu.Xu/� D 1 C ´u.Xu/ for all
u � ¹1, : : : ,N º. Expanding the nonconstant component functions of w.X/ in terms of measure-
consistent orthonormal polynomials yields

wu.Xu/D
X

jjuj2N
juj
0

j1,:::,jjuj¤0

Dujjuj ujjuj.Xu/, ; ¤ u� ¹1, : : : ,N º, (43)

with

Duj juj WD

Z
RN

lny.x/ ujjuj.xu/fX.x/dx (44)
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defining a distinct but similar set of expansion coefficients. Finally, combining Equations (42) and
(43) leads to the L-PDD of

y.X/D exp.w;/
Y

;¤u�¹1,:::,N º

exp

2
66664

X
jjuj2N

juj
0

j1,:::,jjuj¤0

Dujjuj ujjuj.Xu/

3
77775, (45)

which is yet another exact representation of y.X/, where infinite orthonormal polynomials of
increasing dimensions are structured with a multiplicative hierarchy, as opposed to an additive
hierarchy in Equation (10). Consequently, an S -variate,mth-order L-PDD approximation, retaining
at most S -variate component functions and mth-order orthogonal polynomials, becomes

NyS ,m.X/D exp.w;/
Y

;¤u�¹1,:::,N º
16juj6S

exp

2
66664

X
jjuj2N

juj
0

,kjjujk16m
j1,:::,jjuj¤0

Dujjuj ujjuj.Xu/

3
77775, (46)

which also converges to y.X/ in the mean-square sense when S !N and m!1.
Similar to F-PDD, no simple expressions are available for the second-moment properties of
NyS ,m.X/ when S and m are arbitrary. However, a probabilistic characteristic of y.X/ is also eas-
ily estimated by the MCS of NyS ,m.X/ in Equation (46). When S D 1, the univariate L-PDD
approximation with Dij WDD¹iº.j / becomes

Ny1,m.X/D exp.w;/
NY
iD1

exp

2
4 mX
jD1

Dij ij .Xi /

3
5 , (47)

forming a product of exponential functions of univariate polynomials. In which case, the approxi-
mate mean and variance of Ny1,m.X/ are readily calculated from

EŒ Ny1,m.X/�D exp.w;/
NY
iD1

E

2
4exp

8<
:

mX
jD1

Dij ij .Xi /

9=
;
3
5 (48)

and

E
�
. Ny1,m.X/�EŒ Ny1,m.X/�/2

�
D exp.2w;/

NY
iD1

E

2
4exp

8<
:2

mX
jD1

Dij ij .Xi /

9=
;
3
5

� exp.w;/
NY
iD1

E

2
4exp

8<
:

mX
jD1

Dij ij .Xi /

9=
;
3
5 ,

(49)

respectively, that are valid for an arbitrary m < 1, provided that the expectations exist and are
finite. It is important to note that the expectations in Equations (48) and (49) require at most uni-
variate integrals regardless ofN orm, and involve the expansion coefficientsDij , i D 1, : : : ,N and
j D 1, : : : ,m, stemming from the univariate L-PDD approximation in Equation (47).

Remark 12
The A-PDD approximation Qy1,m.X/ is called univariate because Equation (14) comprises a sum
of at most univariate component functions, describing only the main effect of X. In contrast,
the F-PDD approximation Oy1,m.X/ in Equation (36) and the L-PDD approximation Ny1,m.X/ in
Equation (47) contain products of various univariate functions. Therefore, some effects of interac-
tions between two input variables Xi and Xj , i ¤ j , subsist in Oy1,m.X/ or Ny1,m.X/. As an example,
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consider a function, y D y; C y¹1º.X1/ C y¹2º.X2/ C y¹1º.X1/y¹2º.X2/=y;, of two variables,
containing a sum and a product of its univariate ANOVA component functions. The univariate
A-PDD approximation, Qy1,m D y; C y¹1º.X1/ C y¹2º.X2/, captures only the main effects of
X1 and X2, and may produce nonnegligible errors if the product term of y is significant. On the
other hand, the univariate F-PDD approximation Oy1,m D .1C ´;/Œ1C ´¹1º.X1/�Œ1C ´¹2º.X2/� D
y;Cy¹1º.X1/Cy¹2º.X2/Cy¹1º.X1/y¹2º.X2/=y;, obtained using the relationships in Equations (30)
and (31), exactly reproduces y, thereby capturing not only the main effects but also the interactive
effect of input variables. Therefore, the term ‘univariate’ used in this paper for the multiplicative
PDD approximations should be interpreted in the context of including at most univariate compo-
nent functions, not necessarily preserving only the main effects. It would be intriguing to study if a
univariate approximation from a multiplicative PDD results in more accurate stochastic solutions of
real-life problems than that from the additive PDD.

Remark 13
When y; is zero or is close to zero, Equations (30)–(38) may fail or become ill-conditioned, raising
questions about the suitability of the F-PDD approximation in such conditions. The L-PDD approx-
imation faces a similar situation when a stochastic response is nonpositive or close to zero, as the
logarithmic transformation employed in Equations (39)–(49) is invalid or highly nonlinear. How-
ever, they do not necessarily imply that the L-PDD or F-PDD cannot be used. Indeed, all of these
problems can be remedied by appropriately conditioning the stochastic response y. For instance, by
adding a nonzero constant to y or multiplying y with a nonzero constant, Equations (30)–(38) for
the preconditioned y remain valid and well behaved. Similarly, by adding a nonnegative constant to
y or multiplying y with a nonzero constant, one can make the preconditioned y to always remain
positive or well behaved. Section 7 describes how such problems may arise in a practical situation,
including simple adjustments to work around them.

Remark 14
The MCS of PDD approximations QyS ,m.X/, OyS ,m.X/, or NyS ,m.X/, referred to as embedded MCS in
this paper, entails evaluations of simple analytical functions. Hence, an arbitrarily large sample size
can be accommodated in an embedded MCS for estimating rare-event probabilities. In contrast, the
MCS of y.X/, referred to as crude MCS in this paper, requires expensive numerical calculations
and can, therefore, be prohibitive when estimating such probabilities.

5. EXPANSION COEFFICIENTS

The determination of the expansion coefficients y;, Cujjuj , w;, and Dujjuj in Equations (2), (9),
(40), and (44), respectively, involves various N -dimensional integrals over RN . For large N , a
full numerical integration employing an N -dimensional tensor product of a univariate quadrature
formula is computationally prohibitive. Instead, a dimension-reduction integration scheme and a
sampling technique were applied to estimate the coefficients efficiently.

5.1. Dimension-reduction integration

The dimension-reduction integration, developed by Xu and Rahman [14], entails approximating a
high-dimensional integral of interest by a finite sum lower-dimensional integrations. For calculating
the expansion coefficients, y;, Cujjuj , w;, and Dujjuj , this is accomplished by replacing the N -
variate function y or lny in Equations (2), (9), (40), and (44) with an R-variate truncation, where
R < N , of its referential dimensional decomposition at a chosen reference point [12, 15]. The
result is a reduced integration scheme, requiring evaluations of at most R-dimensional integrals.
The scheme facilitates calculation of the coefficients approaching their exact values as R!N , and
is significantly more efficient than performing one N -dimensional integration, particularly when
R � N . Hence, the computational effort is significantly decreased using the dimension-reduction
integration. When R D 1 or 2, the scheme involves one-dimensional or, at most, two-dimensional
integrations, respectively. Nonetheless, numerical integration is still required for a general integrand.
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The integration points and associated weights, which depend on the probability distribution of Xi ,
are readily available when the basis functions are polynomials [2, 16]. Further details are given in
Appendix A.

The S -variate, mth-order A-PDD, F-PDD, and L-PDD approximations require evaluations of
QS ,m D

PkDS
kD0

�
N
S�k

�
mS�k number of expansion coefficients, including y; or w;. If these

coefficients are estimated by dimension-reduction integration with R D S < N and therefore
involve at most an S -dimensional tensor product of an n-point univariate quadrature rule depend-
ing on m, then the total cost for the S -variate, mth-order approximation entails a maximum ofPkDS
kD0

�
N
S�k

�
nS�k.m/ function evaluations. If the integration points include a common point in

each coordinate – a special case of symmetric input probability density functions and odd values of

n (see Example 3) – the number of function evaluations reduces to
PkDS
kD0

�
N
S�k

�
.n.m/� 1/S�k . In

other words, the computational complexity of the PDD approximations is an S th-order polynomial
with respect to the number of random variables or integration points.

5.2. Sampling

Sampling techniques, including crude MCS or quasi-MCS, for estimating the expansion coefficients
comprise two simple steps: (1) generate a point set PL WD ¹x.l/ 2RN , l D 1, : : : ,Lº of size L 2N
consistent with the probability measure of the random input X; (2) approximate the integrals in
Equations (2), (9), (40), and (44) as the averages of y, y ujjuj , lny, and lny ujjuj evaluated at
all points of PL. In crude MCS, PL contains a sequence of pseudorandom numbers, following
the probability distributions of X. In quasi-MCS, PL is a set of a low-discrepancy sequence. The
advantage of one MCS over the other depends on the smoothness properties of the integrand and
the dimension of the integral [17].

Remark 15
It is important to emphasize that the F-PDD and L-PDD approximations involve the same or similar
expansion coefficients that are defined in the additive PDD approximation. Therefore, the com-
putational effort of the additive PDD approximation is recycled for generating both the F-PDD
and L-PDD approximations. No additional computational cost is incurred by either variant of the
PDD approximation.

6. NUMERICAL EXAMPLES

Three numerical examples are presented to illustrate the performance of the additive and multiplica-
tive PDD approximations in calculating the statistical moments of random mathematical functions
or random eigenvalues, including the tail probability distributions of natural frequencies. In
Example 1, classical Legendre or Hermite polynomials were used to define the orthonormal polyno-
mials, and all expansion coefficients were determined analytically. In Examples 2 and 3, all original
random variables were transformed into standard Gaussian random variables, facilitating the use of
Hermite orthonormal polynomials as bases and the Gauss–Hermite quadrature rule for calculating
the expansion coefficients. The expansion orderm varies depending on the example, but in all cases,
the number of integration points nDmC 1. In Example 2, the sample sizes for crude MCS and the
embedded MCS of all three PDD methods are 107. The respective sample sizes are 50, 000 and 106

in Example 3.

6.1. Example 1: two mathematical functions

Consider a polynomial function and an exponential function, expressed by

y1.X/D
1

2N

NY
iD1

�
3X2i C 1

�
and (50)

y2.X/D
1

.4=5/N=2

NY
iD1

�
exp

	
X2i
10


�
, (51)
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respectively, whereXi , i D 1, : : : .N , are independent and identical random variables. Each variable
follows standard uniform distribution over [0,1] for the polynomial function and standard Gaussian
distribution with zero mean and unit variance for the exponential function. From elementary calcu-
lations, the exact mean and variance of y1 are 1 and .6=5/N � 1, respectively, and those of y2 are
1 and .16=15/N=2 � 1, respectively. The purpose of this example is to compare the second-moment
statistics of both functions for N D 5 obtained using A-PDD (Equations (12) and (13)), F-PDD
(Equations (37) and (38)), and L-PDD (Equations (48) and (49)) approximations. The integrals in
Equations (48) and (49) were evaluated bymC1-point Gauss–Legendre rule for y1 but analytically
for y2.

Table I presents relative errors, defined as the ratio of the absolute difference between the exact
and approximate variances of y1 to the exact variance, committed by the additive and multiplica-
tive PDD approximations for various combinations of the truncation parameters 1 6 S 6 5 and
1 6 m 6 8. The errors from A-PDD approximations drop as m increases, but they level off
quickly at their respective limits for the univariate to quadrivariate A-PDD approximations. When
m D 2, the error due to the pentavariate, second-order A-PDD approximation reaches zero, as the
approximation coincides with y1. The error remains zero for the univariate, second-order F-PDD
approximation, as y1 is a product of univariate quadratic polynomials. For the same reason, there is
no need to employ higher-variate or higher-order F-PDD approximations. In contrast, the univariate
L-PDD approximation also yields progressively smaller errors asm increases, but unlike in F-PDD,
the error does not vanish. This is because the logarithmic transformation inducing additional nonlin-
earity to y1 creates a nonpolynomial that cannot be exactly reproduced by a polynomial, regardless
of how largem<1 becomes. Nonetheless, the L-PDD, which also requires only univariate approx-
imation, is more accurate than the univariate to quadrivariate A-PDD approximations when m> S .
Both the F-PDD and L-PDD approximations favorably exploit the multiplicative structure of y1, but
the former approximation is superior to the latter approximation when dealing with multiplicative
polynomials.

Table II displays the results from similar error analysis performed for y2, a product of univariate
functions, although not polynomials. As expected, the errors emanating from A-PDD approxima-
tions decline as S or m rises. Since the pentavariate A-PDD and the univariate F-PDD of y2 are
identical polynomials, the respective errors coincide regardless of m. Again, due to a multiplicative
nature of y2, the F-PDD approximation is more appropriate to use than the A-PDD approxima-
tion. However, neither converges to exactness, as y2 is a nonpolynomial function to begin with.
In contrast, the logarithmic transformation, not beneficial to y1, creates a polynomial image of
y2, which is, therefore, exactly reproduced by an L-PDD approximation. Indeed, the univariate,
second-order L-PDD approximation yields the exact variance of y2, turning the tables on the F-PDD

Table I. Relative errors in calculating the variance of y1 by various polynomial dimensional
decomposition approximations.

A-PDDa F-PDDa L-PDD

m S D 1 S D 2 S D 3 S D 4 S D 5 S D 1 S D 1

1 3.7� 10�1 1.3� 10�1 9.0� 10�2 8.5� 10�2 8.5� 10�2 8.5� 10�2 5.9� 10�2

2 3.3� 10�1 5.9� 10�2 5.6� 10�3 2.2� 10�4 0 0 3.7� 10�2

3 3.3� 10�1 5.9� 10�2 5.6� 10�3 2.2� 10�4 –b –b 3.5� 10�4

4 3.3� 10�1 5.9� 10�2 5.6� 10�3 2.2� 10�4 –b –b 8.3� 10�7

5 3.3� 10�1 5.9� 10�2 5.6� 10�3 2.2� 10�4 –b –b 1.1� 10�6

6 3.3� 10�1 5.9� 10�2 5.6� 10�3 2.2� 10�4 –b –b 1.6� 10�7

7 3.3� 10�1 5.9� 10�2 5.6� 10�3 2.2� 10�4 –b –b 3.3� 10�7

8 3.3� 10�1 5.9� 10�2 5.6� 10�3 2.2� 10�4 –b –b 3.3� 10�7

Note: PDD, polynomial dimensional decomposition; A-PDD, additive PDD; F-PDD, factorized PDD; L-PDD, logarithmic
PDD.
aThe variances from the pentavariate, second-order A-PDD and univariate, second-order F-PDD approximations coincide
with the exact solution: .6=5/N � 1, whereN D 5.
bNot required.
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Table II. Relative errors in calculating the variance of y2 by various polynomial dimensional
decomposition approximations.

A-PDD F-PDD L-PDDa

m S D 1 S D 2 S D 3 S D 4 S D 5 S D 1 S D 1

1 1 1 1 1 1 1 1
2 1.1� 10�1 5.2� 10�2 5.1� 10�2 5.0� 10�2 5.0� 10�2 5.0� 10�2 0
3 1.1� 10�1 5.2� 10�2 5.1� 10�2 5.0� 10�2 5.0� 10�2 5.0� 10�2 –b

4 6.6� 10�2 4.7� 10�3 2.7� 10�3 2.6� 10�3 2.6� 10�3 2.6� 10�3 –b

5 6.6� 10�2 4.7� 10�3 2.7� 10�3 2.6� 10�3 2.6� 10�3 2.6� 10�3 –b

6 6.4� 10�2 2.2� 10�3 1.8� 10�4 1.5� 10�4 1.5� 10�4 1.5� 10�4 –b

7 6.4� 10�2 2.2� 10�3 1.8� 10�4 1.5� 10�4 1.5� 10�4 1.5� 10�4 –b

8 6.4� 10�2 2.2� 10�3 5.9� 10�5 2.6� 10�5 2.6� 10�5 2.6� 10�5 –b

Note: PDD, polynomial dimensional decomposition; A-PDD, additive PDD; F-PDD, factorized PDD; L-PDD, logarithmic
PDD.
a The variance from the univariate, second-order L-PDD approximation coincides with the exact solution: .16=5/N=2 � 1,
whereN D 5.
bNot required.

approximation for tackling multiplicative nonpolynomials. In summary, both functions y1 and y2,
although simple and somewhat contrived, demonstrate a clear advantage of multiplicative PDD over
additive PDD approximations.

6.2. Example 2: eigenvalues of an undamped, spring–mass system

Consider a two-degree-of-freedom, undamped, spring–mass system, shown in Figure 1, with
random mass and random stiffness matrices

M .X/D
�
M1.X/ 0

0 M2.X/

�
andK .X/D

�
K1.X/CK3.X/ �K3.X/
�K3.X/ K2.X/CK3.X/

�
, (52)

respectively, where K1.X/ D 1000X1 N/m, K2.X/ D 1100X2 N/m, K3.X/ D 100X3 N/m,
M1.X/ D X4 kg, and M2.X/ D 1.5X5 kg. The input X D ¹X1,X2,X3,X4,X5ºT 2 R5 is an
independent lognormal random vector with its mean vector �X D 1 2 R5 and covariance matrix
†X D diag

�
v21 , v22 , v23 , v24 , v25

�
2 R5�5, where vi , i D 1, : : : , 5, representing the coefficients of vari-

ation of Xi , are as follows: v1 D v2 D 0.25, v3 D v4 D v5 D 0.125. There exist two real-valued
random eigenvalues, �1.X/ and �2.X/, which are sorted into an ascending order.

Since the eigenvalues are in general nonpolynomial functions of input, a convergence study with
respect to the truncation parameters of PDD approximations is required to calculate the probabilistic
characteristics of eigensolutions accurately. The expansion coefficients were calculated by a full
five-dimensional tensor product of an mC 1-point, univariate Gauss–Hermite quadrature formula.
Figure 2(a) and Figure 2(b) depict how the relative errors in the probabilities, P Œ�1.X/ 6 �01� and
P Œ�2.X/ 6 �02�, of the two random eigenvalues decay with respect to S for m D 15 when the
thresholds �01 D 780 (rad/s)2; �02 D 1200 (rad/s)2 and �01 D 300 (rad/s)2; �02 D 565 (rad/s)2,
respectively. The relative error is defined as the ratio of the absolute difference in the probabilities
estimated by crude MCS and embedded MCS of PDD approximations to the probability calculated
by crude MCS. When �01 D 780 (rad/s)2; �02 D 1200 (rad/s)2, the probabilities are relatively large,

Figure 1. A two-degree-of-freedom, undamped, spring–mass system.
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Figure 2. Relative errors in P Œ�1.X/ 6 �01�, P Œ�2.X/ 6 �02� of the spring–mass system by various
polynomial dimensional decomposition (PDD) methods: (a) �01 D 780 (rad/s)2, �02 D 1200 (rad/s)2; (b)
�01 D 300 (rad/s)2, �02 D 565 (rad/s)2. Note: MCS, Monte Carlo simulation; A-PDD, additive PDD;

F-PDD, factorized PDD; L-PDD, logarithmic PDD.

for which, according to Figure 2(a), there is no notable difference in the errors from the A-PDD,
F-PDD, and L-PDD approximations. Therefore, any of the three approximations can be a method
of choice. However, when �01 D 300 (rad/s)2; �02 D 565 (rad/s)2, the probabilities are relatively
small, in which case the lower-variate (S D 1 or 2) F-PDD and L-PDD approximations, shown in
Figure 2(b), commit smaller errors than the corresponding A-PDD approximations do. Therefore,
a multiplicative PDD approximation may be preferred over an additive PDD approximation when
calculating the tail distributions of a stochastic response.

6.3. Example 3: modal analysis of a functionally graded cantilever plate

The third example involves free vibration analysis of a 2m� 1m� 10 mm cantilever plate, shown
in Figure 3(a), made of a functionally graded material (FGM)§, where silicon carbide (SiC) particles
varying along the horizontal coordinate � are randomly dispersed in an aluminum (Al) matrix.
The result is a random inhomogeneous plate, where the effective elastic modulus E.�/, effective
Poisson’s ratio �.�/, and effective mass density 	.�/ are random fields. They depend on two princi-
pal sources of uncertainties: (1) randomness in the volume fraction of SiC particles 
SiC.�/, which
varies only along � , and (2) randomness in constituent material properties, comprising elastic moduli
ESiC and EAl, Poisson’s ratios �SiC and �Al, and mass densities 	SiC and 	Al of SiC and Al material
phases, respectively. The particle volume fraction 
SiC.�/ is a one-dimensional, inhomogeneous,
Beta random field with mean �SiC.�/D 1��=L and standard deviation �SiC.�/D .�=L/.1��=L/,
where L is the length of the plate. Assuming an appropriately bounded covariance function of

§Functionally graded materials are two-phase or multiphase particulate composites in which material composition and
microstructure vary spatially in the macroscopic length scale to meet a desired functional performance.
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Figure 3. A functionally graded material cantilever plate: (a) geometry; (b) a 20 � 40 finite-element
analysis mesh.

Table III. Statistical material properties of constituents in SiC–Al functionally
graded material.

Material propertiesa Mean Coefficient of variation, %

ESiC, GPa 419.2 15
�SiC 0.19 5
	SiC, kg/m3 3210 15
EAl, GPa 69.7 15
�Al 0.34 5
	Al, kg/m3 2520 15

a ESiC D elastic modulus of SiC, �SiC D Poisson’s ratio of SiC,
	SiC Dmass density of SiC, EAl D elastic modulus of Al,
�Al D Poisson’s ratio of Al, 	Al Dmass density of Al.


SiC.�/, the standardized volume fraction Q
SiC.�/ WD Œ
SiC.�/ � �SiC.�/�=�SiC.�/ was mapped
to a zero-mean, homogeneous, Gaussian image field ˛.�/ with an exponential covariance func-
tion �˛.t/ WD EŒ˛.�/˛.� C t /� D exp.�jt j=0.125L/ via Q
SiC.�/ D F �1SiCŒˆ.˛.�//�, where ˆ
is the distribution function of a standard Gaussian random variable and FSiC is the marginal
distribution function of Q
SiC.�/. The Karhunen–Loève approximation [18] was employed to dis-
cretize ˛.�/ and hence 
SiC.�/ into 28 standard Gaussian random variables. In addition, the
constituent material properties, ESiC, EAl, �SiC, �Al, 	SiC, and 	Al, were modeled as independent
lognormal random variables with their means and coefficients of variation described in Table III.
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Therefore, a total of 34 random variables are involved in this example. Employing a rule of
mixture, E.�/ Š ESiC
SiC.�/ C EAlŒ1 � 
SiC.�/�, �.�/ Š �SiC
SiC.�/ C �AlŒ1 � 
SiC.�/�, and
	.�/Š 	SiC
SiC.�/C 	AlŒ1�
SiC.�/�. Using these spatially-variant effective properties, a 20� 40
mesh consisting of 800 eight-noded, second-order shell elements, shown in Figure 3(b), was con-
structed for finite-element analysis (FEA) to determine the natural frequencies of the FGM plate.
No damping was included. A Lanczos algorithm [19] was employed for calculating the eigenvalues.

The probability distributions of natural frequencies of the FGM plate were evaluated using the
univariate, fourth-order A-PDD, F-PDD, and L-PDD approximations, including crude MCS. The
expansion coefficients of the PDD approximations were estimated using dimension-reduction inte-
gration with R D S D 1 and n D 5. Figure 4 presents the marginal probability distributions
Fi .!i / WD P Œ�i 6 !i � of the first six natural frequencies �i , i D 1, : : : , 6, where the PDD solu-
tions were obtained from embedded MCS. The plots are made over a semilogarithmic scale to
delineate the distributions in the tail regions. For all six frequencies, the probability distributions
obtained from the F-PDD and L-PDD approximations are much closer to the crude Monte Carlo
results compared with those obtained from the A-PDD approximation. Each PDD approximation
requires only 137 FEA, which is significantly lower than the 50,000 FEA employed by crude MCS,
to generate the small probabilities in Figure 4.

Figure 5 displays the joint probability density function f12.!1,!2/ of the first two natural fre-
quencies �1 and �2 obtained by crude MCS and the univariate, fourth-order A-PDD, L-PDD, and
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Figure 4. Marginal probability distributions of the first six natural frequencies of the functionally graded
material plate by various polynomial dimensional decomposition (PDD) approximations and crude Monte

Carlo simulation. Note: A-PDD, additive PDD; F-PDD, factorized PDD; L-PDD, logarithmic PDD.
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Figure 5. Joint probability density function of the first and second natural frequencies of the functionally
graded material plate by various polynomial dimensional decomposition (PDD) approximations and
crude Monte Carlo simulation (MCS). Note: A-PDD, additive PDD; F-PDD, factorized PDD; L-PDD,

logarithmic PDD.
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Figure 6. Contours of the joint density function of the first and second natural frequencies of the function-
ally graded material plate by various polynomial dimensional decomposition (PDD) approximations and
crude Monte Carlo simulation: (a) f12 D 0.005; (b) f12 D 0.0005. Note: A-PDD, additive PDD; F-PDD,

factorized PDD; L-PDD, logarithmic PDD.

F-PDD approximations. Although visually comparing these three-dimensional plots is not simple,
the joint distributions from all three PDD approximations and the crude Monte Carlo method seem
to match reasonably well. Indeed, the contours evaluated at a relatively high level, for instance
f12 D 0.005, and exhibited in Figure 6(a) confirm a fairly good agreement among all four distribu-
tions. However, when examined at a relatively low level, for instance f12 D 0.0005, the contours in
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Figure 6(b) reveal the F-PDD or L-PDD approximation to be more accurate than the A-PDD approx-
imation. These findings are consistent with the marginal distributions of natural frequencies dis-
cussed in the preceding paragraph. It appears that a lower-variate multiplicative PDD approximation,
in this case a univariate F-PDD or L-PDD approximation, may provide more accurate probabilistic
characteristics of a stochastic response than a univariate additive PDD approximation. This is
because a univariate multiplicative PDD approximation subsumes some interactive effects of input
variables, as alluded to in Remark 12.

7. APPLICATION

This section illustrates the effectiveness of the proposed multiplicative PDD methods in solving a
large-scale practical engineering problem. The application involves predicting the dynamic behavior
of a sport utility vehicle (SUV) in terms of the statistical properties of mode shapes and frequency
response functions.

7.1. A sport utility vehicle body-in-white model

Figure 7(a) presents a computer-aided design model of an SUV body-in-white (BIW), referring to
the automotive design stage where a car body’s sheet metal components have been welded together,
before moving parts, motor, chassis subassemblies, and trim have been added. The BIW consists
of the bare metal shell of the frame body, including fixed windshields. A finite-element mesh of
the model, comprising 127,213 linear shell elements and 794,292 active degrees of freedom, is
displayed in Figure 7(b). Portrayed in Figure 7(a), the computer-aided design model contains 17
distinct materials having random properties, including 17 Young’s moduli and 17 mass densities.
In addition, six of these materials, which are used in ceiling, floor, hood, and side body of the
vehicle, have random structural damping factors. In aggregate, there exist 40 random variables Xi ,
i D 1, : : : , 40, as follows: X1 to X17 D Young’s moduli of materials 1 to 17; X18 to X34 D mass
densities of materials 1 to 17; and X35 to X40 D damping factors of materials 1 to 6. Their means,
�i WD EŒXi �, i D 1, : : : , 40, are listed in Table IV. Each variable follows an independent, truncated
Gaussian distribution with lower limit ai D 0.55�i , upper limit bi D 1.45�i , and coefficient of
variation vi D 0.15. The deterministic Poisson’s ratios are as follows: 0.28 for materials 1 to 13; 0.2
for materials 14 and 15; and 0.3 for materials 16 and 17.

Figure 7. A sport utility vehicle body-in-white: (a) a computer-aided design model; (b) a finite-element
analysis mesh.
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Table IV. Mean values of the random input variables for a sport utility vehicle
body-in-white.

Material Young’s modulus, Mass density, Structural
GPa kg/m3 damping factor, %a

1 207 9500 1
2 207 9500 1
3 207 8100 1
4 207 29,260 1
5 207 29,260 1
6 207 37,120 1
7 207 9500 –b

8 207 8100 –b

9 207 8100 –b

10 207 29,260 –b

11 207 30,930 –b

12 207 37,120 –b

13 207 52,010 –b

14 69 2700 –b

15 69 2700 –b

16 20 1189 –b

17 200 1189 –b

aStructural damping, best suited for frequency domain analysis, assumes that the
damping forces are proportional to the forces caused by stressing of the structure
and are opposed to the velocity.
bThe damping factors for materials 7–17 are equal to zero (deterministic).

7.2. Steady-state dynamic analysis

A mode-based steady-state dynamic analysis consists of two steps: an eigensolution extraction, fol-
lowed by a frequency response calculation. For obtaining eigensolutions, the upper bound of the
frequency extraction range was chosen as 300 Hz, and the frequency response functions were com-
puted up to 150 Hz. The automatic multilevel substructuring method [20] embedded in ABAQUS
(Version 6.11) [21] was employed for extracting natural frequencies and mode shapes. The auto-
matic multilevel substructuring eigensolver approximates global eigenmodes below the global cutoff
frequency of 300 Hz, and the frequency response solutions below 150 Hz were calculated at 1 Hz
increments. Since the BIW model is not constrained, there exist six rigid body modes.

For the steady-state dynamic analysis, the rolling motion of the vehicle was simulated by apply-
ing two harmonic loads with concentrated vertical force of unit amplitude at the nodes, called drive
points, located at the two pivot points on the bottom of the vehicle floor. The frequency response
functions were calculated at a node, called the transfer point, under the driver’s seat. The drive and
transfer points are marked in Figure 7(b).

Due to the uncertainty in material properties, the eigensolutions or frequency response functions
are stochastic. The univariate, second-order multiplicative PDD approximations were employed to
find their second-moment characteristics and various response probabilities. The associated expan-
sion coefficients of PDD were estimated by crude MCS with 500 samples. The sample size for the
embedded MCS of the PDD approximations varies from 104 to 106, depending on the response
desired.

7.3. Results

7.3.1. Moments of mode shapes. The univariate, second-order F-PDD and L-PDD approximations
were employed to calculate the second-moment statistics of each nodal displacement component
of an eigenvector describing the associated mode shape of the BIW structure. All input random
variables were transformed into standard Gaussian random variables, permitting the use of
Hermite orthonormal polynomials as basis functions. For F-PDD, the statistics were calculated
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Figure 8. Contour plots of the L2-norm of the 21st mode shape of a sport utility vehicle body-in-white by
two multiplicative polynomial dimensional decomposition (PDD) approximations: (a) mean; (b) variance.

Note: F-PDD, factorized PDD; L-PDD, logarithmic PDD.

directly using Equations (37) and (38). However, for L-PDD, the statistics were estimated from the
embedded MCS of Equation (47), sidestepping the need to evaluate the integrals in Equations (48)
and (49) for each displacement component at all nodes. When a displacement y is nonpositive, the
mean plus ten times the standard deviation of y, estimated from crude MCS used in obtaining
the coefficients, was added, resulting in a positive displacement required by L-PDD. No con-
ditioning was needed or performed for F-PDD. These simple modifications aid in calculating
the means and variances of displacement components at all nodes. Based on these statistics, the
L2-norms (square root of sum of squares) of the mean and variance of a nodal displacement were
calculated. Figure 8(a) and Figure 8(b) present contour plots of the L2-norms of the means and
variances, respectively, of an arbitrarily selected 21st mode shape, calculated using the F-PDD and
L-PDD approximations. Both approximations yield reasonably close statistical moments, including
the variances of the mode shape. Similar results can be generated for other mode shapes if desired.

7.3.2. Percentile functions of receptance, mobility, and inertance. For mode-based steady-state
dynamic analysis, three types of frequency response functions were examined: receptance, mobility,
and inertance. They are approximated by

up,d1d2t .!/' .i!/
p

KX
kD1

�

k,d1 C 
k,d2

�

k,t�

�2
k
.1C isk/�!2

� (53)

where i D
p
�1, K is the number of eigenmodes retained, 
k,d1 and 
k,d2 are the two drive point

vertical components of the kth eigenmode, 
k,t is the transfer point vertical component of the kth
eigenmode,�k is the kth eigenfrequency, sk is its corresponding structural damping factor, and ! is
the excitation frequency over which the frequency response function is desired. The exponent p cor-
responds to the type of frequency response calculated: p D 0 for receptance, p D 1 for mobility, and
p D 2 for inertance. All three frequency response functions are commonly used in the automotive
industry to evaluate the dynamic performance of vehicle designs. For random input, it is insightful
to study the probabilities of receptance and mobility for a vehicle subjected to a range of excitation
frequency. When a frequency response function y is positive, but very close to zero, it was multi-
plied by a factor of 10� logy , creating a well-behaved function in L-PDD. No such conditioning was
required in F-PDD. Figure 9(a–c) shows various percentiles of real parts of receptance, mobility,
and inertance under the driver’s seat, respectively, obtained from the two univariate multiplicative
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Figure 9. Percentiles of real parts of frequency response functions at the driver’s seat of a sport utility
vehicle body-in-white by two multiplicative polynomial dimensional decomposition (PDD) approximations:

(a) receptance; (b) mobility; (c) inertance. Note: F-PDD, factorized PDD; L-PDD, logarithmic PDD.

PDD approximations. The respective results for imaginary parts are depicted in Figure 10(a–c). In
both sets of figures, the percentiles were calculated from 104 embedded MCS of each PDD approx-
imation at an increment of 1 Hz for the excitation frequency range of 1 to 150 Hz. Again, both the
F-PDD and L-PDD approximations produce similar results. Therefore, either of the multiplicative
PDD methods can be used for stochastic dynamic analysis.

7.3.3. Acceleration probabilities. Finally, Table V presents the probabilities of a weighted root
mean square value of the vertical component of the acceleration under the driver’s seat lying
within the following intervals: Œ0, 0.315� (not uncomfortable), Œ0.315, 0.63� (a little uncomfort-
able), Œ0.5, 1� (fairly uncomfortable), Œ0.8, 1.6� (uncomfortable), Œ1.25, 2.5� (very uncomfortable),
and Œ2,1/ (extremely uncomfortable). These intervals, developed and calibrated by the Interna-
tional Standard ISO 2631 [22], define acceptable values of accelerations inside a vehicle for various
levels of passenger comfort. The higher the interval endpoints, the harsher the level of passenger
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Figure 10. Percentiles of imaginary parts of frequency response functions at the driver’s seat of a sport utility
vehicle body-in-white by two multiplicative polynomial dimensional decomposition (PDD) approximations:

(a) receptance; (b) mobility; (c) inertance. Note: F-PDD, factorized PDD; L-PDD, logarithmic PDD.

Table V. Probabilities of acceleration under the driver’s seat of a sport utility vehicle body-in-white.

Interval of acceptable accelerations, m/s2a

Method Œ0, 0.315� Œ0.315, 0.63� Œ0.5, 1� Œ0.8, 1.6� Œ1.25, 2.5� Œ2,1/

A-PDD 7.4� 10�1 2.6� 10�1 3.1� 10�3 0 0 0

F-PDD 6.9� 10�1 2.7� 10�1 3.6� 10�2 3.2� 10�3 7.3� 10�4 4.1� 10�4

L-PDD 8.4� 10�1 1.1� 10�1 3.4� 10�2 8.8� 10�3 2.1� 10�3 4.3� 10�4

Note: PDD, polynomial dimensional decomposition; A-PDD, additive PDD; F-PDD, factorized PDD; L-PDD, logarithmic
PDD.
aFrom International Standard ISO 2631 [22].

experience. The weighted root mean square acceleration, obtained for an assumed applied load of

1000 N, was calculated from
h
.1=150/

P150
jD1¹1000˛ju2,d1d2t .!j /º

2
i1=2

, where ˛j and !j are the

j th weight and excitation frequency, respectively [22].
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The probabilities were calculated by the univariate, second-order A-PDD, F-PDD, and L-PDD
approximations and 106 embedded MCS. The acceleration probabilities in Table V predicted by
both versions of the multiplicative PDD approximations have the same order and are reasonably
close to each other, considering their low values. In contrast, the additive PDD approximation either
significantly underpredicts or fails altogether in calculating the probabilities for all intervals exam-
ined. Therefore, the multiplicative PDD methods afford stochastic solutions that are unattainable by
the additive PDD method, at least, in this problem.

It is important to emphasize that the probabilistic characteristics of eigensolutions or frequency
response functions reported here were generated using only 500 FEA, representing the compu-
tational effort by the multiplicative PDD methods. Obtaining percentile functions or acceleration
probabilities employing 104 or 106 crude MCS would be computationally prohibitive in today’s
desktop computing environment, illustrating the efficacy of the PDD methods. Furthermore, the
methods developed are nonintrusive and can be easily adapted to solving complex stochastic
problems requiring external legacy codes.

8. CONCLUSIONS

Two new multiplicative variants of PDD, namely factorized PDD and logarithmic PDD, were
developed for uncertainty quantification of high-dimensional complex systems. They are based
on hierarchical, multiplicative decompositions of a multivariate function in terms of lower-variate
component functions, Fourier-polynomial expansions of lower-variate component functions by
measure-consistent orthonormal polynomial bases, and a dimension-reduction integration or sam-
pling technique for estimating the expansion coefficients. Compared with the existing, additive
PDD, the factorized and logarithmic PDDs exploit the multiplicative dimensional hierarchy of
a stochastic response when it exists. Since both PDDs are rooted in the ANOVA dimensional
decomposition, their existence and uniqueness are guaranteed for a square-integrable function. A
theorem, proven herein, reveals the relationship between all component functions of factorized
PDD and ANOVA dimensional decomposition, so far available only for the univariate and bivariate
component functions. Similar to the additive PDD, truncations of a multiplicative PDD lead to a
convergent sequence of lower-dimensional estimates of the probabilistic characteristics of a general
stochastic response. Using the properties of orthogonal polynomials, explicit formulae were derived
for calculating the response statistics by the univariate factorized PDD and univariate logarithmic
PDD approximations in terms of the expansion coefficients. Unlike the univariate additive PDD
approximation, which captures only the main effects of input variables, a univariate truncation of
multiplicative PDD includes some effects of interactions among input variables.

The additive and multiplicative PDD methods were employed to calculate the second-moment
properties and tail probability distributions in three numerical problems, where the output func-
tions are either simple mathematical functions or eigenvalues of dynamic systems, including natural
frequencies of an FGM plate. When a function is purely multiplicative, the factorized or loga-
rithmic PDD requires at most univariate approximation, resulting in a much faster convergence
than the additive PDD approximation. However, the relative superiority of one multiplicative PDD
approximation over the other depends on the nature of the function and whether a logarithmic trans-
formation enhances or reduces the nonlinearity of the function. A similar trend was observed when
calculating small probabilities of eigenvalues of a linear oscillator, where the multiplicative PDDs
commit lower errors than does the additive PDD at lower-variate approximations. Given the same
computational effort of univariate approximations, both variants of the multiplicative PDD yield
more accurate tail probabilistic characteristics of natural frequencies of an FGM plate than the
additive PDD. Finally, a successful evaluation of random eigensolutions of a SUV represents a
significant advance in the ability of the new methods in solving practical engineering problems.

Neither variant of the multiplicative PDD approximation encounters additional cost to that
required by the additive PDD approximation. Indeed, the computational complexities of all three
variants of the PDD approximation are identical and polynomial, as opposed to exponential, with
respect to the number of input variables. Therefore, a PDD approximation, whether additive or
multiplicative, mitigates the curse of dimensionality to some degree.
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APPENDIX A: DIMENSION-REDUCTION INTEGRATION OF COEFFICIENTS

Let c D .c1, : : : , cN / 2 RN be a reference point of X and y.xv , c�v/ represent an jvj-variate
component function of y.x/, v � ¹1, : : : ,N º. Replacing y.x/ with an R-variate truncation of its
referential dimensional decomposition [12, 15], the coefficients y;, Cujjuj , w;, and Dujjuj are
estimated from [14]
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respectively, requiring evaluation of at most R-dimensional integrals.
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