

Landon Evans | Kyle Peterson | Steve Baek, PhD | Kevin Kregel | Karim Malek, PhD | June 2018

THE PROBLEM

Athletics & Military

Massive data

- Sensors
- Subjective
- Objective
- Clinical
- Performance

- Health care providers
- Coaches
- Commanders
- Athletic Trainers
- Clinicians
- Sports scientists
- Statisticians

Tracking
Player availability
Fatigue
Mitigating injuries
Increase performance

BACKGROUND

- Significant efforts in human modeling and simulation
 AI, Machine Learning, Simulation, Robotics, Biomechanics, and Physiology
- MALUM has the capability for identifying likelihood of injury risk using data that was collected by athletics for various team sports.
- Using data from the UI Athletics Department for basketball and soccer, MALUM was used to track athletes with various sensors, historical data, medical records, and performance records.
- An Al program was developed to learn from the data, identify causality of injury, and predict future injuries.
- Uniqueness: 14 years of R&D to build the virtual soldier SANTOS® with significant funding (over \$50M) from the US Military and corporations such as Ford, GM, Chrysler, Caterpillar, and others.

THE ALGORITHM

COMPREHENSIVE SETS OF DATA

Player Profile

- Age
- Gender
- Weight
- No of games

. . . .

Body Parameters

- Modifiable
- Physiological
- Physiological tracking and readiness
- Strength
- Non-modifiable Anthropometry

training data

- Daily Measures
 Physiology
- Training Load

Player Load (Distance, Total IMA, Player Load/Minute, IMAs)

- RPE Load
- Time dependent
- Wellness questionnaires

Nutrition, Stress Academic Intensity, Sleep Quality, Sleep Duration, Fatigue

Injuries

- Injury history
- MSK
- Self reported to ATC & physician
- Injury Data (MSK, Type, Date, location, type, grade)

Risk Factors /Proxies

- Valgus angle
- Past injuries
- ...

Dynamics

- Biomechanics metrics
- Kinetics
- Kinematics
- Energy
- Accelerations
- Peak-avg reaction forces
- Peak- avg torques at joints
- Time to completion

Subject

- Age, weight
- Gender
- Weight
- Strength
- Flexibility
- Physiology
- ExpectedTraining Load
- Past injuries
- FMS
- Proxies

DASHBOARD

Propensity for Injury
Physiological performance
Biomechanical
performance
Fatigue
Time to failure

COMPREHENSIVE SETS OF DATA (lowa)

Catapult

Omegawave

Force plates

Tensiomyography

Wellness Surveys

sRPE

Etc ...

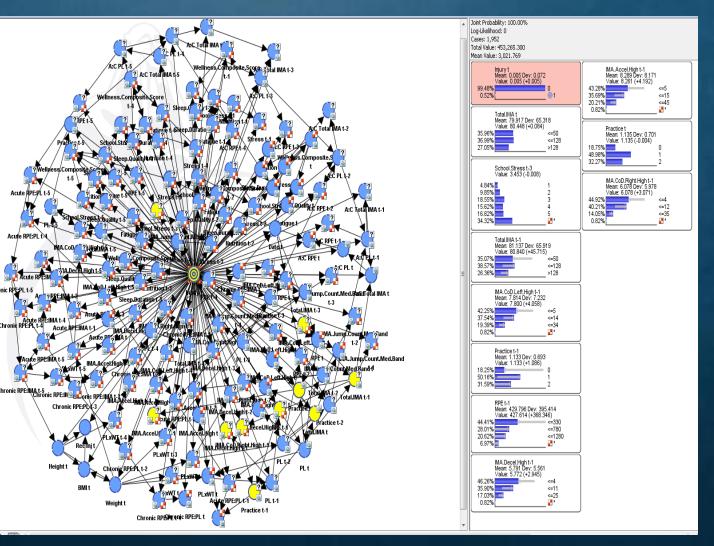
TRACKING FROM A SINGLE CAMERA

CLASSIFICATION & MACHINE LEARNING

SANTOS METRICS

Calculating the Biomechanics Parameters

Capture Catapult Data



EXAMPLE CASE

Injury Analysis
of Iowa
Women's
Basketball

Iowa Soccer Iowa Field Hockey

What if scenarios!

BAYESIAN NETWORK

Analytics and Reasoning

PLAYER 1 NOT IN NETWORK (results)

PLAYER 2 NOT IN NETWORK (results)

KIPLEUM AGAINST COMPETITORS

KIPLEUM

- Comprehensive system for converting data to actionable intelligence
- Unique access to data (full seasons)
- Unique conversion of tracking to biomechanics metrics
- Unique signature extraction via Deep Learning
- Unique machine-based predictions based on belief
- Ability to conduct "What-If" scenarios

Competitors:

- Produce sensors (hardware companies)
- Focus on physical performance
- No signature extraction using Deep Learning or AI
- Do not focus on injuries mitigation
- Already have large markets

THANK YOU

